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ABSTRACT

A fast and scalable graph processing method becomes inwgbas

important as graphs become popular in a wide range of applica

tions and their sizes are growing rapidly. Most of distrézligraph
processing methods require a lot of machines equipped with a

tal of thousands of CPU cores and a few terabyte main memory

for handling billion-scale graphs. Meanwhile, GPUs cou&d &
promising direction toward fast processing of large-sgakgphs
by exploiting thousands of GPU cores. All of the existing Imet
ods using GPUs, however, fail to process large-scale gtthpihslo
not fit in main memory of a single machine. Here, we propose
fast and scalable graph processing met&dcs that handles even
RMAT32 (64 billion edges) very efficiently only by using a gla

In order to handle large-scale graphs efficiently, therestmen
proposed a number of distributed graph processing mettiquxche
Giraph [1, 11] is an alternative implementation of GoogRiegel
[22]. It follows the Bulk-Synchronous Parallel (BSP) magspass-
ing model where all vertex kernels run simultaneously in a se
quence of supersteps. Within a superstep, each kernelvescai
messages from the previous superstep and sends them talis ne
bors in the next superstep. Apache Spark GraphX [10, 33,s35] i
a graph-parallel framework built on top of Apache Spark. Eew
Graph [9, 20, 21] is a graph processing framework considetie

a power-law distribution of real graphs. It follows the Gati#gply-

Scatter (GAS) model, where Gather collects the informagibout
adjacent vertices/edges, Apply updates the new value ofehe

machine. The proposed method stores graphs in PCI-E SSDs anotral vertex using the information, and Scatter updates #ta dn

executes a graph algorithm using thousands of GPU coreg whi

streaming topology data of graphs to GPUs via PCI-E interfac

GTS is fast due to no communication overhead and scalable due

to no data duplication from graph partitioning among maekin
Through extensive experiments, we show t&atS consistently
and significantly outperforms the major distributed grapbcpss-
ing methods, GraphX, Giraph, and PowerGraph, and the sfate-
the-art GPU-based method TOTEM.

Categories and Subject Descriptors

D.1.3 [Programming Techniqueg: Concurrent Programming —
parallel programming; E.10ata Structures]: Graphs and net-
works

Keywords
Graph processing, GPUs, SSDs, Stream

1. INTRODUCTION

Graphs are widely used to model real-world objects in magy di
ciplines such as social networks, web, business inteltigehiol-
ogy, and neuroscience, due to their generality of modelgthe
sizes of real graphs are growing rapidly, fast and scalatdely
processing methods have become more important than ev@ebef
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| adjacent edges using the new value. Although they follovir the

own architectures and models, they all require a lot of nraashi
equipped with a total of thousands of CPU cores and a fewyterab
main memory for handling billion-scale graphs.

Meanwhile, the continuous advancement of GPU technology ma
kes the theoretical computing power of modern computers- eve
increasing. Due to the much higher theoretical computingope
mance of GPUs than CPUs, it becomes more and more important
to exploit GPUs in a wide range of problems requiring high-per
formance computing such as graph processing. Exploiting<GP
could be a promising direction toward fast processing @fdescale
graphs mainly due to their implementation of the charasties
of the Parallel Random Access Machine (PRAM) abstractidre T
PRAM abstraction has been widely used to investigate thieate
performance of parallel graph algorithms. It assumes aniigfi
number of processors and uniform memory latency. GPUs imple
ment these characteristics with a very large number of harglw
threads and uniform memory latency. In addition, GPUs haas-m
sive memory bandwidth. Conventional CPUs are far from those
characteristics and only can traverse or calculate on a étices
at a time. On the contrary, GPUs can do on a much large number
of vertices at a time, without a severe memory bottleneckéoed
memory and without excessive concern about different mgaer
tency. Since many real graphs have millions or billionsiges,
GPUs are potentially well suited to fast processing of suelplgs.

Nevertheless, there is a major challenge associated wplliex
ing GPUs for processing large-scale graphs. Many real grdph
not fit in the GPU device memory with this tendency becoming
more marked as the sizes of graphs are growing [7,8]. Lackmsf s
port for large-scale graphs beyond the capacity of devicenong
is pointed out as one of the most critical problems of thetimgs
graph processing methods using GPUs [7,8,15]. There isshinwo
study on solving this problem yet, in spite of its importante the
best of our knowledge, TOTEM [7, 8] is the only work to systéma



ically process a graph that does not fit in the GPU device mgmor
To solve the problem, it partitions a graph into two partg part

in main memory and the other part in GPU device memory. GPUs
process the part in GPU device memory, while CPUs process the
part in main memory. Though it can handle large-scale graphs
has many fundamental drawbacks such as underutilizatiadheof
computational power of GPUSs, lack of scalability in termsthoé
number of GPUs, and the difficulty of optimizing performarnite

to a lot of options. Furthermore, it still cannot procesgéairscale
graphs beyond the capacity of main memory.

e Through extensive experiments, we demonstrate @S
consistently and significantly outperforms the major dis-

ed graph processing methods, GraphX, Giraph, and Power-
Graph, and the state-of-the-art GPU-based method TOTEM,
across wide range of benchmarks.

Especially, we show th&TS can process an RMAT32 graph
within a reasonable time in a single machine that the exjstin
distributed methods fail to process by using 30 machines of
a total of about 2 TB memory.

The rest of this paper is organized follows. Section 2 resitve

We propose a fast and scalable GPU-based graph processingjata format adopted b@TS. In Section 3, we propose tH@TS

method calledGTS that can process even RMAT32 (64 billion
edges) graphs very efficientlyGTS fully exploits the computa-
tional power of GPUs by processing the entire graph onlygisin
GPUs. It does not rely on the graph partitioning scheme amd no
require a bunch of options for optimization. To overcomelimét

of GPU memory capacity and moreover the limit of main mem-
ory capacity, we propose a conceptstbring only updatable at-
tribute data and moving topology dataHere, the attribute data
means the information about vertices and edges that aréredqu
and updated during execution of vertex kernels. The prapose
method stores graphs in PCI-E SSDs and executes a graph algo
rithm using thousands of GPU cores while streaming topotzig

of graphs to GPUs via PCI-E interface. More specificabyf'S

first copies attribute data to GPU device memory, and thew, pr
cesses a graph algorithm by applying a user-defined GPU lkerne
function on each piece of topology data being copied in asire
ing fashion from main memory to device memory. In GPUs, asyn-
chronous data transfer can be achieved by using the asyrmigo
GPU streams (e.g., CUDA Streams), which could hide memory ac
cess latency from GPUs to main memory and so utilize GPU'’s
computing power more. For efficient streami®@gTS adopts the
slotted page format [12] that divides a graph into fixed-simis.

In terms of exploiting multiple GPUs and SSDs, we also prepos
two strategies, (1) the strategy for performance (shd®tiategy-P)

for high performance with a limit on scalability and (2) theas-

egy for scalability (shortly, Strategy-S) for high scalabiwith a
limit on performance GTS can achieve higher performance com-
pared with the existing methods, due to nho communication-ove
head among machines and due to exploiting massive pasaileli
GPU cores. In addition, it could achieve higher scalabitityn-
pared with the existing methods, due to no data duplicatiom f
graph partitioning among machines and due to storing graphs
secondary storage, i.e., SSDs. For example, it can easily ahd
process an RMAT33 graph (8 billion vertices and 128 billidges)
only using 1 TB PCI-E SSDs, theoreticallgTS is also fairly scal-

method. In Section 4, we present two strategies for explpitiul-

tiple GPUs and SSDs. In Section 5, we present the cost mofiels o
GTS, and in Section 6, we address several implementation issues
Section 7 presents the results of experimental evaluagioth Sec-
tion 8 discusses related work. Finally, Section 9 summarae
concludes this paper.

2. PRELIMINARIES

In this section, we explain the data formats proposed far sto
ing graph data, especially with focusing on the format forisg
a graph on secondary storage (e.g., SSD). Most of real geaehs
known as to be sparse, and various kinds of in-memory forfoats
a sparse graph have been proposed. They include Diago#gl (DI
[13], ELLPACK (ELL) [2], Compressed Sparse Row (CSR), Com-
pressed Sparse Column (CSC), and Coordinate list (COO) &y
might have a limit on the size of graphs to process since teay u
ally require a very long contiguous edge array in main menfary
large-scale graphs.

Besides, there is an external memory (i.e., out-of-cor@)lgfor-
mat called theslotted page formaftL2]. It represents a graph in a
set of fixed-size slotted pages. A slotted page consistsmpbwts,
recordsandslots where records grow forward from the start of the
page, but slots grow backward from the end of the page. A slot
consists of a vertex I0dgical ID), denoted as VID, and the start
offset of the corresponding record, denoted as OFF. A recond
sists of the size of the adjacency list, denoted as ADJLIZT a8d
the adjacency list itself, denoted as ADJLIST. Here, thaeelcy
list again consists of a list akcord I1Ds of neighbor vertices. A
record ID is gphysical IDconsisting of a pair of the page ID (of 2-
byte), denoted as ADJ_PID, and the slot number (of 2-bytererh
the corresponding vertex is located, denoted as ADJ_OF&sByg
physical IDs, graph algorithms can access to the physicatitins
of neighbor vertices easily during traversal. This coneae#gihys-
ical ID is commonly used for performance in database areh [14
The vertex IDs and record IDs are consecutive and orderddrwit

able in terms of the number of GPUs and SSDs, and so, shows a& Page.
stable speedup when adding a GPU or an SSD to the machine. Itis Figure 1 shows an example graghand the slotted pages of

becausesTS almost uniformly distributes the units of graph data
to GPUs, which again perform graph processing almost indepe
dently of each other.

The main contributions of this paper are as follows:

e We propose a novel concept sforing only updatable at-
tribute data and moving topology dataat is counter-intuitive
in terms of the conventional models (e.g., GAS) of storing
topology data and moving attribute data.

We propose a parallel graph processing metBd® on GPUs
that can perform graph algorithms very efficiently for large
scale graphs (e.g., billions vertices) by fully exploititige
asynchronous GPU streams.

We present two strategies that can improve the performance

or the scalability further by exploiting multiple GPUs and
multiple SSDs: Strategy-P and Strategy-S.

G. In Figure 1(a), the vertices), v1, andv. have a relatively small
number of neighbor vertices, whilg has a relatively large number
of neighbor ones. Such skewness of the node degree digtribist
common in real graphs. The low-degree vertices {ikg, v1, v2}
can be stored in a single page3# in Figure 1(b), which is called
a Small PagdSP). In contrast, a high-degree vertex likemight
not be stored in a fixed-size slotted page, but can be stonaailin
tiple pages{LP:, LP.} instead as in Figure 1(c), which are called
Large PagegLPs).

3. STREAMING GRAPH TOPOLOGY

In this section, we present the proposed metdds. Section
3.1 explains the concept of streaming topology, and Seétidde-
scribes the streaming scheme3 S in detail. Section 3.3 presents
the scheme to process various types of graph algorithmsSaad
tion 3.4 shows the algorithm of tHeTS framework.
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3.1 Concept

In general, graph algorithms require both graph topology da
(shortly, topology data) and attribute data for verticed/anedges.
For example, in addition to topology data, PageRank reguixe
attribute vectors for vertices: a vector of the previous éRank
values (shortly, prevPR) and a vector of the next PageRahk va
ues (shortly, nextPR). As another example, BFS requiresabne
tribute vector for keeping traversal levels for verticdsofsly, LV).
The attribute vectors again can be divided into read-ongsand
read/write ones. For example, for PageRank, prevPR is aaelgd
attribute vector, while nextPR is a read/write attributetoe in a
specific iteration. For BFS, LV is a read/write attribute togc

Most of the existing graph processing systems [9, 20, 2jvia
the concept that topology data is stored on main memory ins cl
ter of machines, and attribute data is moved among mactergs (
the Gather-Apply-Scatter (GAS) model). Without loss of gret
ity, the amount of attribute data to be moved is smaller thmat t
of topology data, and so, it is beneficial to follow that cqutctor
a distributed shared-memory system where each local mecaory
be accessed via a relatively slow interconnection netwotéw-
ever, it might not be true for a machine equipped with GPUs$ tha
have limited device memory and are connected with main mgmor
via a much faster interconnection, i.e., PCI-E interface.

Here, we propose a concept stbring only updatable attribute
data and moving topology datavhere a relatively small amount
of attribute data is stored in GPU’s limited device memonyd a
topology data is moved via a high-speed interconnectionviiMp

vertex IDs. That is possible since the vertex IDs are corise&cu
in each slotted page. Let attribute data ¥eand topology data
beY = {y1,- - ,yn}. Then, the amount of device memory re-
quired for processing the graph algoritircompletely becomes
|X| 4+ |ys| . Itis obviously important to reducgX| or |y;| in or-

der to process a large-scale graph with the limited size oitde
memory. In general, sind& | >> |y;|, we focus on reducingX|.
Between read-only attribute vector (shortly, RA) and reaité at-
tribute vector (shortly, WA)GTS keeps only WA in device mem-
ory for reducing the amount of device memory used. Since WA is
frequently and randomly updated during graph algorithmen-g
eral, itis important to keep WA in device memory for perfome.
However, RA is not updated during processing, and so cance fe
into device memory together with the corresponding toppltafa.

For example, for PageRank, we keep the entire nextPR in @éevic
memory, but feed each subvector of prevPR together withdhe c
responding topology page to device memory.

Figure 2 shows the data flow @TS. We suppose WA is di-
vided intoW chunks {V = 1 in default), and RA is divided int&
subvectors. We also suppose the nhumbers of small pagesrged la
pages areS and L, respectively. The number of units of RA, i.e.,
R is usually equal to S since most of the topology pages are SP,
which will be shown in Section 7.5. RArepresents the subvector
of RA corresponding to SP For WA, GTS performs the following
three steps: (1) copying WA to GPU device memory; (2) process
ing graph algorithms while copying the topology pag&s; } (or
{LP;}) together with the read-only attribute vect¢RA; } to GPU
device memory in a streaming fashion; and (3) copying WA civhi
has been updated during graph processing, back to main mjemor
for (data) synchronization.

Main memory buffer Device memory

PCI-E
attribute data | ——————
..................... 1. chunk copy WABUF
wa,| [ wa
1 Wt | 3. synchronizatian
_— T
RA,| | RAg f1------ .
2. streaming | RABuf |
topology data copy.. .-~} SPBUF i
....................... e :
- [sPsfiq---~ . LPBuf ]!
| e _____J 1
LP, | LP, Rq4--""7

Figure 2: Basic data flow of GTS.

3.2 Asynchronous multiple streaming
GTS copies topology data from main memory to GPU device

topology data from main memory or SSDs to GPUs takes some memory via the PCI-E bus asynchronously in a streaming wary. F

amount of time even using PCI-E interconnection. However, w
can hide that time by processing a given graph algorithm ls&mu
neously with moving attribute data. A graph algoritithis exe-
cuted through a corresponding user-defined G®thelfunction,
denoted as K In our method, K is executed using thousands of
GPU cores for both a part of topology data and attribute détzw
GPU device memory.

Intuitively, GTS first copies read/write attribute data to device
memory, and then, processes graph algorithms by copyirds rea
only attribute data and topology data in a streaming faslion
device memory.GTS considers that each attribute vector is con-
ceptually partitioned into multiple subvectors, and togyl data
consists of multiple fixed-size units, especially, in thetteld page
format described in Section 2. For example, prevPR for PagkR
can be conceptually decomposed into a lot of subvectorstendne
subvector corresponds to a slotted page in terms of the rahge

streaming topology dat& TS adopts the slotted page format, but
it is not a necessary condition thafT'S uses the slotted page for-
mat. GTS may adopt any format that can divide topology data into
fixed-size units for streaming>TS rather adopts the slotted page
format since it considers workload balancing and coalesoegh-
ory access to some degree, which will be discussed in Segtibn
For streaming RA, SP, and LP to device memdS allocates
three kinds of streaming buffers in device memory, calledBR#&
SPBuf, and LPBuUf, respectively, as in Figure 2. In additifor,
WA, GTS also allocates a chunk buffer called WABUT.

GTS exploits multiple GPU streams for streaming. Figure 3
shows the timeline of copy operations of attribute and togpdata
to device memory. A CPU thread first transfers WA to WABUf.
Then, it starts multiple GPU streams, each of which perfoams
series of operations, (1) copying Sg@r LP;) to SPBuf, (2) copy-
ing RA; to RABuUf, and (3) executing the kernel function, repeat-



edly. In general, transfer operations for WA, RA&nd SP to de-
vice memory cannot overlap with each other, at least in theeot
GPU architecture [5]. Instead, they can overlap with kemel-
cution [5, 27]. Theoretically, the suitable number of stne& can

be determined by using the ratio of the transfer time of 8fd
RA; to the kernel execution time. For example, in Figure 3, if the
kernel execution time i& times longer than transfer time, then the
transfer operation for SR 1 would start right after the transfer op-
eration for RA, at timet¢. Table 1 shows the ratios of the transfer
time to the kernel execution time for BFS and PageRank orethre
real data sets used in experimental evaluation. BFS hasvedja
high ratios since it is not computationally intensive, wehiageR-
ank has relatively low ratios since it is computationallseimsive.
Thus, the optimak seems to be dependent on graph algorithms.

S|R SR
stream; | WA |P|A Ksp P|A Ksp
]
S|R S|IR
stream, PlA Ks, [? Ksp
2|2 k+2|k+2|
SR S|IR
stream; PlA KSF PlA KSF‘
k| k 2| 2k

; time

Figure 3: Timeline of copy operations in multiple streams.

Table 1: The ratios of transfer time to kernel execution timefor

BFS and PageRank on real data sets.

| Algorithm | Twitter [18] | UK2007 [32] | YahooWeb [34]]
BFS 1:3 1.1 2:1

PageRank 1:20 1.6 1:4

However, in practice, the performance continuously ineesa
until using 32 streams, which will be shown in Section 5.4isTif
because the kernel execution becomes faster whear8PRA; are

3.3 Handling BFS-like algorithms

We consider two major types of graph algorithms: (1) access-
ing a part of a graph via graph traversal and (2) accessingoéewh
graph by linear scanning vertices and edges [12]. The foatger
rithms are usually less computationally intensive, butseaunon-
coalesced memory accesses due to the irregular structgreiis.
They include Breadth-First Search (BFS), Single-Sourter@st-
Path (SSSP), neighborhood, induced subgraph, egonet;e-amd
cross-edges. BFS is the typical one [7, 8, 12], and hereafeede-
note them as BFS-like algorithms. The latter algorithmauareally
computationally intensive, and the scan order of verticebatlges
is not important in many cases. They include PageRank, degre
distribution, Random Walk with Restart (RWR), radius estiions,
and connected components. PageRank is the typical onelf], 8,
and hereafter, we denote them as PageRank-like algorithms.

The processing scheme described in Sections 3.1 and 32-is ty
ically suitable for processing a single iteration of PagaRlike
graph algorithms that access the entire topology data droe:-
ever, BFS-like algorithms requires level-by-level traadr where
a single level traversal accesses a very small portion aflooy
data and does not require streaming the entire topology Eaizh
traversal just requires streaming a set of topology pagesizong
the vertices to be visited. For that purpo&ETS keeps the data
structure called nextPIDSet that contains the IDs of pagés tac-
cessed at the next level. The local version of nextPIDSeidsited
in each GPU during a single level traversal and copied baoiaia
memory, and then, a CPU thread merges the local versionsinto
single global version. At the next level, the CPU thread espihe
set of topology pages in the global nextPIDSet to GPU. Asualties
GTS can integrate two types of algorithms having quite différen
access patterns into a single framework, which will be erpléin
Section 3.4.

After GTS allocates four buffers WABuf, RABuf, SPBuf, and
LPBuf in the GPU device memory, there might be free memory
available in GPU device memory. Especially, for BFS, siGdkS

prepared in the queues of GPU in advance. The maximum numberallocates a small amount of WABuUf due to small WA data, where

of streams that can execute a kernel function concurreatd?iin
the current CUDA technology [5]. After streaming and prazes
ing all {SP;} for WA, GTS performs streaming and processing all

WA is just a LV attribute vector for vertices, there might biegof
free memory leftin GPU device memory. In that caS&S tries to
maximize the performance of graph processing by cachingltop

{LP;} for WA. The reason separating processing SPs from pro- ogy data, i.e., SPs and LPs. The BFS-like algorithms coutés

cessing LPs is reducing the kernel switching overhead arSétsy
and LPs. After processing all data streamed to GPU is doaeith
dated WA is copied back to main memory for bulk synchronaati
which is omitted in Figure 3. Figure 4 shows the actual timei

the same topology pages repeatedly during traversal, arsctiie
caching scheme could avoid unnecessary copying from maim-me
ory to device memory. In general, the cache hit rate inceeas¢he
size of cache memory increases. When the total number of-topo

of copy operations for BFS and PageRank when using 16 streamsogy pages of a graph i$ + L, a naive approximation of the cache

on a synthetic data, which is obtained by profiling. In Figdre
the very short red colored bars indicate copying &Rd RA to
device memory, while the long green colored bars indicate@ix
ing a kernel function. The timeline for PageRank in Figure)4$
denser than that for BFS in Figure 4(a) since PageRank is @gomp
tationally intensive, whereas BFS is not.
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(a) Streaming for BFS

Figure 4: Actual timeline of copy operations for BFS and
PageRank when using 16 streams.

(b) Streaming for PageRank

hit rate usingB pages would b&3/(S + L) for random graphs,
though it also depends on a caching algorithm u§ETS basically
adopts the LRU algorithm for the caching algorithm, but othle
gorithms can be used as well.

3.4 Algorithm of the framework

In this section, we present the algorithm of tB&S framework.
Algorithm 1 presents the pseudo code of the framework. It per
forms a user-defined kernel functiorsiKand Kp for a specific
graph algorithm on a grap&’, where kKsp is a kernel for SPs and
Kip is a kernel for LPs.GTS requires such two kinds of kernels
since SPs and LPs have a little different structure. As dralni
ization step,GTS loads G into main memory (MM), creates the
streams for small pages and large pages for each GPU, and allo
cates the buffers WABuf, RABuf, SPBuf, and LPBuf in the de-
vice memory (DM) of each GPU. Then, it sets nextPIDSet, a set
of page IDs to process next, depending on the type of the graph
algorithm. If the graph algorithm is of BFS-like, the pagedbn-



taining the start vertex is assigned to nextPIDSet. Otlewthe

IDSet and cachedPIDMapy are actually not used. The detailed

constant ALL_PAGES is assigned to it. The map data structure kernel functions for BFS and PageRank are explained in Agigen

cachedPIDMapis initialized, which is used for storing the IDs of
cached pages within GRI(Line 8). We note that cachedPIDMap
is updated within GPUduring streaming topology data (Lines 14-
27) and copied back to main memory (Line 29). Here, MMBuf
indicates main memory buffer used for fetching the slottadgs
from SSDs to main memory.

Algorithm 1 Framework ofGTS

Input: GraphG, /* input graph */
Ksp, /* GPU kernel of@ for small pages */
Kirp, I* GPU kernel ofQ for large pages */

Variable: nextPIDSet, /* set of page IDs to process next */
cachedPIDMap  ; /* cached page IDs in GPUy */
bufferPIDMap; /* buffered page IDs in MMBuUf */

: [* Initialization */

. Create SPStream and LPStream for GRY

. Allocate WABuUf, RABuf, SPBuf, LPBuf for GPY y;

. if Q is BFS-likethen

nextPIDSek— page ID containing start vertex;
else
nextPIDSek— ALL_PAGES;

: cachedPIDMap n <+ 0;

»if |G| < MMBUf then

Load G into MMBUf;

. Copy WA to WABUf of GPU. ;

. I* Processing GPU kernel */

. repeat

14.  /*repeat Lines 15-31 for LPs */
15:  for j € nextPIDSet.SRIo

PR R
WN RroLXNOTRWNE

16: if j € cachedPIDMap;) then

17: Call Kspfor SP; in GPU,y;

18: else ifj € bufferPIDMapthen

19: Async-copy SP in MMBuUf to SPBuf in GPU, ;y;
20: Async-copy RA to RABUfin GPU,(;;

21: Call Kspfor SP; in GPU,(;);

22: else

23: Fetch SB from SSO,(; to MMBUT;

24: Async-copy SP in MMBuUf to SPBuf in GPU, ;y;
25: Async-copy RA to RABuUfin GPU,(;;

26: Call Kspfor SP; in GPU,(;);

27:  Thread synchronization in GPU;

28:.  Copy WA of GPU,. n to MMBUf;

29:  Copy nextPIDSet v and cachedPIDMapy to MMBUT;
30: nextPIDSek— Uj<;<nNextPIDSet;

31: until nextPIDSet= ALL_PAGESV nextPIDSet= ()

Therepeat-untilloop (Lines 10-34) takes charge of level-by-level
traversal. For a PageRank-like algorithm, this loop is qankd
only once. Lines 15-27 are performed for processing smajépa
and performed similarly for processing large pages. We tiate
Lines 19-20 and 24-25 asynchronously transfer a topologe pa
SP; (or LP;) in nextPIDSet to a specific GRY;) according to the
return value ofh(j5), which will be explained in Section 4. Here,
before transferring the pag&TS first checks if the page already
exists in the cache of GBY,) by looking up cachedPIDMapji
(Line 16). We note that RAfor LP is a subvector of a single
attribute value since LPdeals with only a single vertex. While

B. In the case of PageRank, since the pseudo code in Algofithm
is for a single iteration of PageRank, users might need ttopar
Lines 13-31 as many times as necessary in their applicatitere,

at the end of every iteration, nextPR should be initializdrdoe-
ing copied to prevPR.

4. EXPLOITING MULTIPLE GPUS

In this section, we present two strategies for exploitingtimu
ple GPUs.GTS can be easily extended to exploit multiple GPUs.
We let the number of GPUs bi¥. Section 4.1 presents the strat-
egy for high performance with a limit on scalability, whese®ec-
tion 4.2 presents the strategy for high scalability withraition
performance.

4.1 Strategy for performance

The first strategy o6 TS for multiple GPUs is copying the same
attribute data, especially WA, to all GPUs and copying aedéht
topology data to each GPU. Figure 5(a) shows the data flownsehe
of that strategy, which consists in four different steps.Stap 1,
GTS copies the same WA to a{lGPU,, - - - , GPUy }, which are
denoted as solid arrows. In Step 2, it executes a given GPteker
Ksp while streaming a different SP,, RA;, ) to each GPY for
1 < k < N, which are denoted as dotted arrows. More specifically,
it copies( SP.un4;j, RAun4; ) t0 GPU for 0 < ¢ < [£] -1
andl < j < N. LPs are processed in the same way. Here, each
GPU can execute the same GPU kernel function independeamtly f
a different part of topology data. Steps 3 and 4 perform thia da
synchronization of WA that has been updated during Step &hwh
are denoted as double-lined arrou&TS exploits the peer-to-peer
memory copying feature of modern GPUs. When using multi-
ple GPUs, a naive synchronization method is perforniagimes
synchronization from GPUs to main memory directly, one time
per each GPU. This approach might suffer from synchroromati
overhead a3V increasesGTS largely reduces such synchroniza-
tion overhead by exploiting peer-to-peer memory copyinggn
GPUs, which speed is much faster than that of between GPU and
main memory. In Step 3, the WA data of each GPU is copied and
merged to the device memory of a master GPU (e.g., GPahd
then, in Step 4, the updated WA data in GPi copied to main
memory.

In terms of the framework o6&TS (i.e., Algorithm 1), Step 1
corresponds to Line 11, Step 2 to Lines 16-26, and Steps 3-4 to
Line 28. In Step 2, for load balancing, the functibfx) returns a
hash value for a page Ipof SP; (or LP;) such that the page S$SP
(or LPy) is streamed to GPLJ;y. Typically, GTS uses themod
function for the default hash function.

This strategy ofGTS potentially can achieve fairly linear par-
allel speedup with respect to the number of GPUs for graph pro
cessing, as long as the capability of data streaming is marffic
Moreover, since the different topology data distributedro8PUs
have almost equal sizes, i.e., almost the same amount ofaaork
under this strategy, the speedup ratio can be fairly stagard-
less of the characteristics of a graph (e.g., its size andeitsity).
The capability of data streaming largely depends on (1) pleed
of PCI-E interface and (2) the I/O performance of SSDs. Utiger

executing a kernel, a new set of page IDs to process at the nextcurrent computer architecture, the I/O speed of SSDs (&bmput

level is assigned to localext PI D Set; in device memory of each
GPU;, which is copied back to MMBuUf (Line 29), and then merged
into the global nextPIDSet (Line 30). The updated set of edeh

up to 2 GB/sec) is much slower than that of PCI-E interfaag (e.
16 GB/sec). Thus, the overall performance of this stratsdimi-
ited to the 1/0 performance of SSDs. To alleviate this penfamce

PIDMap;.y are also copied back to MMBuUf and used in the next problem,GTS exploits multiple SSDs. In detai; TS stores each

level traversal. Inthe case of PageRank-like algorithrat) hextP-

slotted page SPof G'(1 < j < S) in a specific SSQ;), where



g(j) returns a hash value for a page jDand fetches the corre-
sponding page from SSf according to the I/O request at Line 23
in Algorithm 1. If the size ofG is smaller than main memory
buffer (MMBU(f), fully loading G into MMBuUf might be a better
method (Lines 9-10), especially for BFS-like algorithms that

balanced among GPUs regardless of the characteristicsraph.g
This strategy is logically analogous to using a single GPlaafe
device memory. Thus, although increasing the number of GPUs
the performance of graph processing itself does not chaau,
the capability of data streaming to GPU also does not chdhge

case, the speed of PCI-E interface would become a perfoenanc have a large amount of main memory, and so, perform thisglyat

bottleneck.

without accessing to SSDs, the speed of PCI-E interfacedimeih

Although this strategy shows high and stable performance of performance bottleneck. Otherwise, the 1/O performanc83iDs

fairly linear speedup with multiple GPUs, it could suffeniin GPU’s
limited device memory. It could not process a graph algorite-
quiring WA larger than the size of a single GPU’s device mgmor
For example, this strategy can process the PageRank algaitly
up to RMAT30 using a GPU having 6 GB device memory.

Step _ Sep3

(a) Strategy for performance

Figure 5: Two strategies of GTS exploiting multiple GPUs.

4.2 Strategy for scalability

The second strategy &TS for multiple GPUs is copying a dif-
ferent attribute data, especially a different W¢hunk to each GPU
and copying the same topology data to all GPUs. Figure 5¢@jysh
the data flow scheme of that strategy, which consists theges stn
Step 1,GTS copies a different WAto each GPYfor 1 <i < N,

(b) Strategy for scalability

would be a bottleneck. However, when we exploit multiple SSD
as described in Section 4.1, the gap between the I/O perfarena
of SSDs and the logical speed of PCI-E interface is not so much
due to the fixed capability of data streaming to the logicayts
GPU. That means the overall performance of this strategyldvou
not increase much even though processing an entire graphim m
memory.

Consequently, the strategy for scalability®TS is suitable to
process a relatively large-scale graph where its WA canhot &
single GPU'’s device memory by storing the graph on SSDs @ng.
RMAT32 graph in a machine of 6 GB GPUs and 500 GB SSDs). On
the contrary, the strategy for performance@¥S (in Section 4.1)
is suitable to process a relatively small-scale graph whsré/A
can fit in a single GPU’s device memory by storing the graph in
main memory (e.g., an RMAT30 graph in a machine of 6 GB GPUs
and 128 GB main memory).

5. COST MODELS

In this section, we present the cost model&atS, which allow
us to understand the performance tendency and further iraphe
performance later through the cost-based optimization. ovlg
consider major factors that could affect the performanc&®8§.
Since PageRank-like algorithms and BFS-like algorithmmash
quite different tendency, we present two cost models. Fopkt-
ity, we present the cost models for Strategy-P without 1/O.

5.1 Cost model for PageRank-like algorithms
The cost model for PageRank-like algorithms is given by

2]WA| |RA|+|SP|+ |LP| S+ L
tca
a 2 X N + ”( N ) +

which are denoted as solid arrows. In Step 2, it executesemgiv
GPU kernel K p while streaming the saméSP;, RA; ) to all trernet (SP1) + L) + tsyne(N). (1)
GPUs, which are denoted as dotted arrows. LPs are procassed i \yhere NV is the number of GPUs:1 is the communication rate
the same way. Here, each GPU can execute the same GPU kernede.g” in MB/s) between main memory and device memory in a

function independently for a different part of attributealaStep 3
performs the data synchronization of &llWA; } that has been
updated during Step 2, which are denoted as double-linesvarr
Since all WA chunks are disjoint with each oth& TS cannot use
the peer-to-peer memory copying feature of GPUs. Thisegyat
just uses a naive synchronization method of performiagimes
synchronization from GPUs to main memory directly, one tpae
each GPU.

In terms of the framework o6TS, as in Section 4.1, Step 1

chunk copy mode¢2 is the communication rate in a streaming
copy mode¢.q..(z) is the time overhead of calling a kernel func-
tion x times, txernei (y) is the kernel execution time to procegs
pages, andsyn.(z) is the time overhead of synchronization among
z GPUs. Here¢l is usually higher than2 for GPUs. For example,

in PCI-E 3.0 x16 interface;1 is about 16 GB/s, while2 is about

6 GB/s. In Eq. 124 indicates the total amount of time for copy-
ing all WA to device memory and copying the updated ones back
to main memory. That time does not decrease while using pheilti

corresponds to Line 11, Step 2 to Lines 16-26, and Steps 3-4 to gpys. The transfer time dRALISPIILPlig divided by N since the

Line 28. However, in Step 2, the functidiix) returns asefl, - - - ,
N} instead of a single hash value for a pagejl8uch that the page
SP; (or LP;) is streamed to all GPUs.

This strategy ofGTS tries to maximize the size of a graph to
process. Especially, it can achieve linear increase of ithe af

data is transferred concurrently 3 GPUs. The time overhead of
calling the kernel function..:;; (S + L) is also divided byN. The
termigernel (S Py 4L P ) indicates the last kernel execution time
for the last single SP and the last single LP that are not hidge
data streaming. They are not negligible since PageRaslalitjo-

a graph to process, with respect to the number of GPUS, as longrithms are usually computationally intensive. They alsoni be
as the capacity of main memory or SSDs is sufficient. Since the gjvided by N since every GPU does the same thing. We note that

different attribute data distributed over GPUs have alnssgtal
sizes, and at the same time, the same topology data is fethote

the time overhead,,..(IN) increases a@v increases in order to
synchronize WAs among more GPUs.

GPUs, each GPU has almost the same amount of workload under

this strategy. That is, the workload of graph processing éd w

5.2 Cost model for BFS-like algorithms



The cost model is for BFS-like algorithms is given by 6.2 Micro-level parallel processing

GTS mainly focuses on coarse-granular or macro-level paral-

depth
Awa| f |RA@y| + [SPuy | + | LPyy | lel graph processing for handling large-scale graphs tbahat
cl — c2 X N X dskew fit in GPU device memory. However, wheBTS calls a given
B S I GPU kernel on topology data page-by-page, the GPU kernel can
X (1 = rhit) + tcau(w)) 2 apply va}rious kin(_js of fine-granular or micro-level paraieaph
X Gskew processing techniques to each page. The kernel can apply a be

where depth is the number of traversal levels, $is a set of ~ ter/different technique to each page depending on the cteais:
small pages visited at drth level of traversald,y.., is the degree tics of the page (e.g., density, i.e., the ratio of the nunolbgertices

of workload skewness (i.e., imbalance) among GPUs, randis to the number of edges within a page). _

the cache hit rate’” - discussed in Section 3.3. The operations in _For example, we exploit the VWC technique [15] as a default
the braces at different levels of traversal cannot overlap @ach ~ technique for processing each slotted page, where thedtiea
other due to synchronization barrier, and thus the totaluarnof each warp process the outgoing edges of each vertex siraultan

time is just a sum of the times from level O to level depth. The Ously. We presents the GPU kernels for BFS and PageRankiexplo
transfer time of dataf L HISPa HIPGY o goide by due to ing the VWC technique in Appendix B. We denote the VWC tech-

. €2 . T nigue as edge-centric in this paper. On the contrary to edgéric,
lf'?n%\g ﬁrz:)J:fairégg;:ﬁg\ie(rn?gs'?ﬁ;?‘ﬁ?&é’)vavgmfezi?fgr?si ger V& can use another micro-level technique that makes each GPU
N ; - e thread process each vertex and its entire outgoing edgesdeWe
this factor since page access patterns of BFS-like algostmight

. ; - . note that technique as vertex-centric. Then, we can conaitig-
not be qite balanced different from PageRank-like albar. In brid micro-level technique combining both edge-centrid eertex-
the most imbalanced case, the transfer time of data is the sam

- : centric. In general, the vertex-centric technique mighsbiable
with Fhat of using only one GPU. The term {}z.) rep_resents the for very sparse graphs where each vertex has only few owgoin
caching effect, wherey;; is between 0 (no cache hit) and 1 (all . h . )
cache hits). There is no terfn () in this cost model since the edges, while the edge-centric one might be suitable fordpasse
kernel exeéution time of Bngi?Izé glgorithms is not a magtor. graphs. The hybrid technique can handle both types of graphs

. . h applying a different micro-level technique to each pageedejng
There is also no term,.(2) since the size of WA tostzle}i{r{lj:}hro- on the density of the page. We will show the effectivenessache

nized (e.g., LV) is usually negligible. In the tem”(m, technique in Appendix E.

Siy) indicates the number of small pages visited at-timlevel of

traversal. 7. PERFORMANCE EVALUATION

6. IMPLEMENTATION In this section, we present experimental results in fourgaties.
6.1 Data format for trillion-scale graphs First, we evaluate the performance®TS compared with the state-

of-the-art distributed graph processing methods, ApachapB
In terms of the slotted page format, although the one prapose [1,11], Apache Spark GraphX [10, 33, 35], PowerGraph (Gafh

in [12] is useful for re_presentin_g a graph top_ology o_lata fec-s v2.2) [9, 20, 21], and Naiad [23, 25] to show the superiorify o
ondary storage, there is a clear limit to the maximum sizegvph our method. Second, we evaluate the performand®T8 com-

to represent. The physical ID of 4-.byte (2 bytes for page 1D an pared with the state-of-the-art CPU-based graph proagsseth-
bytes for slot number) can theoretically represent a grdptp do ods, Ligra [29], Ligra+ [30], and Galois [26], to show the stipr-

2%2 = 4hillion vertices. In practice, however, it fails to reprase ;

. ! A ity of our method. For reference, we also evaluate the oce
an RMAT30 graph of 1_b||||on vertices and 16 billion edges due o¥the parallel graph processing method using CPUs cgﬁ‘gGMT
to the two-level addressing scheme (of page ”? and slot n.mnbe [2], which is widely used for comparison [36]. Third, we avale
and the skewness of the node degree distribution. Thus deror ¢ performance o&TS compared with the state-of-the-art GPU-
to handle even a trillion-scale graph, we slightly geneeathe ex- based graph processing method, TOTEM [7, 8], to show thersupe

istin%forr:gf]s%clg:thap-byte ga}ge IEj)(gADJ._PIDi:and-byte |S|°t h ority of our method. To the best of our knowledge, TOTEM is the
number ( —~ ) are used for addressing. For example, when only method to process large-scale graphs that do not fit id GP

considering the physical ID of 6-byte, there are three jbssion- device memory and also to exploit multiple GPUs. For refeeen

figurgtionsf las in T_abl; 2, wher(? 3: 2’_(1 3: 4) mg_ans a srr;)all we also evaluate the performance of Cusha [16] and MapG#&iph [
n]lfm.;r 0 argg'S'Ze page, _ 4 4 B 2) a :ne ium mém e; which can process only the graph data that can fitin GPU memory
of midium-sized pages, anp = 4,¢ = 2) a large number o Fourth, we evaluate the performance@fS while varying strate-

small-sized pages. In the table, the maximum page size ¢sical ; ; ;

- " gies (of Section 4), storage types (i.e., SSD and HDD), ttmatvax
lated under the assumption that ADJLISTTSZ IS of 4-byte, VID of streams, and the densities of graphs to show the chasditer
of 6-byte, and OFF of 4-byte. Among configurations, we choose of GTS

(p = 3,q = 3) and implement our method using 64 MB page size,
since bothp andq are well-balanced, and the page size of 64MB 7,1 Experimental setup
is compatible with the default block size widely used in maity

data framework such as Hadoop [31] and Spark. For experiments, we use both synthetic and real datasets. Fo

synthetic datasets, we generate scale-free graphs fatjeapower
law degree distribution by using RMAT [4]. We generate from

Table 2: Three possible configurations of physical ID of 6-bte. RMAT27 to RMAT32, where the ratio of the number of vertices

| p | ¢ | max. page ID| max. slot numberl max. page siz¢ to the number of edges is set to 16. For real datasets, we use
2|4 64K 4B 80GB three well-known graphs of Twitter [18], UK2007 [32], and-Ya
313 16 M 16 M 320 MB hooWeb [34], which all have different sizes and charadiess
42 1B 64 K 1.25 VB Table 3 shows the basic statistics of those data sets. GH@&,




we use(p = 2,q = 2) in Section6.1 for storing RMAT27-29
graphs and real graphs since their sizes are relativelyl.snal

own data format, we convert graph data to its own format,(&g-
lois, Ligra, Ligra+, CuSha, and MapGraph). Different fr@mS,

the table, #SP and #LP mean the number of small pages and thalfOTEM requires a different set of options for each graph itlym

of large pages, respectively, under the correspondinggumatiion

(p = 2,q = 2). Most of topology pages are small pages in both
synthetic and real graphs. We uge = 3,q = 3) for storing
RMAT30-32, where there is no LP due to the large page size of
64 MB.

Table 3: Statistics of graph datasets used in the experimest

data #tvertices| #edges statistics folGTS
(p,q) | #SP | #LP
RMAT27 128 M 2,048M | (2,2) | 9,724 58
RMAT28 256 M 4,096M | (2,2) | 19,533 62
RMAT29 512M 8,192M | (2,2) | 38,747 937
RMAT30 1B 16B | 33) | 1,786 | O
RMAT31 2B 32B (3,3) | 3,584 0
RMAT32 4B 64B (3,3) | 7,175 0
Twitter 42 M 1,468M | (2,2) | 5,418 | 1,029
UK2007 106 M 3,739M | (2,2) | 15,484 0
YahooWeb| 1,414M | 6,636 M| (2,2) | 32,807 O

We summarize the statistics of the size of WA data versuszke s
of topology data in the slotted page format in Table 4. We @ s
the ratio of the WA data to the topology data is very small,clhi
is between 1.7% and 10%. The WA data for up to RMAT32 can
fit in two NVIDIA TITAN X GPUs’ memory (i.e., 24 GB), except
RMAT32 for CC.

Table 4: Statistics of the sizes of WA data versus topology da
in the slotted page format (GByte).

data topology WA
BFS | PageRank SSSP| CC
RMAT28 20 0.5 1 1 2
RMAT29 40 1 2 2 4
RMAT30 114 2 4 4 8
RMAT31 229 4 8 8 16
RMAT32 459 8 16 16 32

and each data set in order to achieve the best performancé/g]
use the sets of options recommended by the authors of TOTEM
for most of experiments. We also have found Naiad oftendatite
process graph queries due to lack of memory, and so, adjiisted
configuration to achieve its best scalability and perforoege.g.,
sizes of heaps and arrays).

7.2 Comparison with Distributed Methods

Figure 6 shows the comparison results among GraphX, Giraph,
PowerGraph, Naiad, an@TS, for BFS and PageRankY -axis
represents the elapsed times in seconds (in log-scaleQaDd
means out of memory error. In the case of PageRank, we measure
the total elapsed times of ten iterations. For four distédumeth-
ods, we measure the elapsed time, excluding loading andizénal
tion times. FOIGTS, we measure the elapsed times between start-
ing reading the first page from main memory (for real graphs an
RMAT28-30) or SSDs (for RMAT31-32) and showing the query re-
sults. Here, for real graphs and RMAT28-30, since they cain fit
main memory, we exclude loading time (Lines 1-10 in Algamith)
for a fair comparison. We set the buffer size®TS to 20% of a
graph size for RMAT31 and RMAT32 (e.g., 45 GB for RMAT31).

For all datasets used;TS significantly outperforms the dis-
tributed graph processing methods using 30 machines, fir bo
BFS and PageRank. MoreovesTS shows the best scalability
among the methods compared. O@Y¥'S can process all graphs
of up to RMAT32 for both BFS and PageRank. Among four dis-
tributed methods, Naiad shows the worst scalability, Girsipows
the worst performance, and PowerGraph the best scalahitity
performance, in general. The reason that the processirg dfm
GTS rapidly increases between RMAT30 and RMAT31 is due to
including 1/0 time of SSDs and changing the strategy from per
formance (of Section 4.1) to scalability (of Section 4.2he®reti-
cally, the processing time @ TS should increase linearly between
RMAT31 and RMAT32 sinc&TS uses the secondary storage and
the same strategy for both datasets, but it actually doesTihét is

We conduct all the experiments of four distributed graph pro because there are higher-degree vertices in RMAT32, anplehe
cessing methods on the same cluster of one master node and 3@Prmance of GPUs tends to be degraded (e.g, down-clocking) d
slave nodes connected via Infiniband QDR (40 Gbps), each nodet0 overheat when processing for a long time.

of which is equipped with two Intel Xeon 8-core 2.60 GHz CPUs,
64 GB memory, and two 3TB HDDs (RAID 0). The cluster has a
total of 480 CPU cores and 1,920 GB memory. We also conduct
all the experiments of four CPU-based methods and four GPU-
based methods on the same workstation equipped with twb Inte
Xeon E5-2687W 3.1GHz CPUs of eight cores, 128 GB main mem-
ory, two NVIDIA GTX TITAN X GPUs of 12 GB device memory,
and two Fusion-io’s PCI-E SSD. The CPUs and GPUs are con-
nected with PCI-E 3.0 x16 interface. For graph processBigS
uses only GPUs, while TOTEM uses both two CPUs and GPUs.
All CPU-based methods use 16 threads after turning off theely
Threading (HT) option for performance.

In terms of software versions and configurations, we useaScal
2.11.7 and Spark 1.5.1 for GraphX, MPI ICC 14.0.0 for Power-
Graph, and Hadoop 1.2.1 for all three distributed methodst F

7.3 Comparison with CPU-based Methods

Figure 7 shows the comparison results among MTGL, Galois,
Ligra, and Ligra+, and5TS, for BFS and PageRank. In the fig-
ure, excepGTS, there is no results for relatively large-scale graphs
such as RMAT29-30 and YahooWeb, since the CPU-based methods
cannot load data into main memory or process graph algosithm
due to lack of main memory. Among the CPU-based methods, Ga-
lois, Ligra, and Ligra+ have significantly outperformed thelti-
threaded graph library (MTGL) in terms of both the elapsadkti
and the size of a graph to process, except the case of Twaiter f
PageRank. Among three CPU-based methotds, Ligra and Ligra+
show a better performance than Galois, except the case 00OUK2
for BFS. Ligra shows a similar performance with Ligra+. Howe
we could not execute Ligra+ for UK2007, RMAT27, and RMAT28,

Giraph, we set the size of mapper memory to 60 GB. For Spark, we due to segmentation fault errors, which were executed ssece

set the size of executor memory to 60 GB. Naiad requires t6€.N
framework, and so, we use Mono (JIT compiler version 3.208) f
running Naiad on Linux. For MTGL, Galois, Ligra, Ligra+, TEM,
CuSha, and MapGraph, we download their latest source ctdes.
compile all single-machine methods with the same optimized
tion of -O3 with gcc 4.9 and CUDA 7.5. If a method requires its

fully in Ligra. We guess the Ligra+ source code is not stalde y
Compared withGTS, either Galois or Ligra slightly outperforms
GTSfor relatively small graphs for BFS. This is because the CPU-
based methods perform edge-level random access for tehadrs
gorithms, whileGTS performs page-level random access with data
transfer overhead between main memory and GPUs. For miativ
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Figure 6: Comparison with GraphX, Giraph, PowerGraph, and Naiad for BFS and PageRank ¥ -axis is log-scale).

large graphs (e.g., YahooWeb, RMAT29-30), o@¥'S could pro-
cess BFS. For PageRar®TS significantly outperforms all CPU-
based methods in terms of both the elapsed time and the si&e of
graph to process.
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Figure 7: Comparison with MTGL, Galois, Ligra, and Ligra+
for BFS and PageRank.

7.4 Comparison with GPU-baesd Methods

Figure 8 shows the comparison results among MapGraph, CuSha

TOTEM, andGTS, for BFS and PageRank. Both CuSha and Map-

data(e.g., RMAT27) due to lack of GPU memory. We expected
CuSha would be faster thaBTS as long as a graph could fit in
GPU memory. However, CuSha was slower ti@&hS, and even
than TOTEM for Twitter. It cannot process PageRank for alis
tested, since PageRank requires more memory than BFS dtes to p
VPR and nextPR. MapGraph is worse than CuSha in terms of scal-
ability. It cannot process even BFS for Twitter. It can jusiqess

a tiny graph like LiveJournal. It is because the Market Matoir-

mat of MapGraph is less space-efficient than the G-Sharddoofn
CuSha.
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Graph can process only the graph data that can fit in GPU mem- Figure 8: Comparison with TOTEM, MapGraph, and CuSha

ory, and so, the size of a graph to process is very small.
can process BFS only up to Twitter data. It cannot processroth

CuShafor BFS and PageRank.



We compare the performance ®f'S with the best performance

of TOTEM using the set of options carefully selected. In thsecof
TOTEM, we can minimize the amount of graph data processed by
slower processors, i.e., CPUs, by fitting as much graph dapas:
sible in device memory, and thus, maximize its performamfqe-
pendix C shows the set of options including the ratios of yidgta
processed by GPUs to that by CPUs in TOTEM (GPU%:CPU%),
most of which are the ones recommended by the authors.
PageRank, TOTEM slightly outperforn®&T S for relatively small-
scale graphs such as RMAT27, Twitter, and UK20G.S, how-
ever, significantly outperforms TOTEM for large-scale drapuch
as RMAT29. For BFSGTS consistently outperforms TOTEM.

Here, TOTEM cannot process YahooWeb due to some bugs, and 8

so, there is no corresponding result. In addition, TOTEMnodn
process RMAT30-32 since it relies on in-memory data forreat r
quiring a contiguous array in main memory. We note BaS
processes PageRank for RMAT29 only in about 59 secondshwhic
indicates the graph processing spee@df is about 7 GB/s, since
the size of RMAT29 is about 40 GB in the slotted page formad, an
the number of PageRank iterations is ten in the experimaies.
also note thaGTS shows the performance of up to 1,500 MTEPS
(millions traversed edges per second) for Twitter.

7.5 Characteristics ofcTs

Figure 9 shows the performance GTS while changing the
strategy explained in Section 4 for RMAT30. Strategy-P é¢atks
the strategy for performance in Section 4.1, and StrateglyeS
strategy for scalability in Section 4.2. Both strategiesvglimilar
performance with each other when using 1 SSD or 2 HDDs since
the 1/0O performance is a bottleneck. However, Strategydwsta
slightly better performance than Strategy-S when usingnmem-
ory or 2 SSDs due to no or less I/O bottleneck.

m Strategy-P  m Strategy-S 1253.4 m Strategy-P  w Strategy-S 5343
g 1400 12652] g 3000 2843.4
%1200 % 2500
1000
£ £ 2000
B 80 B 1500
& 600 3
©
S 400 902 158.1 & 1000 . 356.7
00 63.5 157.3 500 8 2281 3454
296 8: . 153.4 195.9
0 - 0 - -
in-memory 28SDs 1SSD  2HDDs in-memory 2SSDs 1SSD 2 HDDs
Storage type Storage type
(a) BFS (b) PageRank (10 iterations)

Figure 9: Comparison between two strategies for BFS and
PageRank (RMAT30).

In terms of the overall performance, we note that the speed of
PCI-E bus becomes a bottleneck in memory setting, and the 1/0
performance of PCI-E SSDs becomes a bottleneck in SSD gettin
For example, for ten iterations of PageRank using RMAT30S
in memory setting takes about 153 seconds, which is appairign
equal to114 x 10 + 6 = 190 seconds, where 6 means the com-
munication rate in a streaming copy magdkin Section 5.1. Here,
actual elapsed time of 153 seconds is smaller than the esdcll
time of 190 seconds due to caching mechanism described i+ Alg
rithm 1. For another exampl&TS using two SSDs takes about
196 seconds, which is approximately equal td x 10 =5 = 228

PageRank for RMAT30 is about 2,843 seconds, where the calcu-
lated time is114 x 10 + 0.33 = 3,454 seconds. Here, actual
elapsed time of 2,843 seconds is smaller than the calcuiatef
3,454 seconds due to the page buffering mechanism.

Figure 10 shows the performance GTS while varying the
number of streams for RMAT26-29. The performance increases
steadily as the number of streams increases for all dataEegs

Forfor BFS where the ratios of transfer time to kernel executiore

are much smaller than 32, it does due to the reason explamed i
Section 3.2.
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Figure 10: Performance when varying the number of streams.

16 32

Figure 11(a) shows the performance®fS for BFS while vary-
ing the cache size from 32 MB to 5,120 MB, and Figure 11(b) show
the corresponding cache hit rates. For RMAT29, there is Ro re
sult at the cache size 5,120 MB due to a large size of WABuUf. We
can easily adjust the size of cache since it is allocated byd C
thread (i.e., the framework thread &TS). For example, for the
cache of 1,024 MBGTS allocates the array of 16 slotted pages of
64 MB within GPU and make cachedPIDMapaintain up to 16
page IDs. In Figure 11(b), the cache hit rates increaserlinea
the cache sizes increase, but decrease linearly as theofiog®l-
ogy data increase, as discussed in Section 3.3.

RMAT26
RMAT28

RMAT27
RMAT29

RMAT26
RMAT27
RMAT28
RMAT29

35 100
30
25
20
15
10

5

80

60

40

Avg. elapsed time (sec.)
Cache hit rate (%)

20

0

32 1024 2048 3072 4096 5120 32 1024 2048 3072 4096 5120
Cache size (MB) Cache size (MB)
(a) Elapsed times (b) Cache hit rate

Figure 11: Effectiveness of caching for BFS.

8. RELATED WORK AND DISCUSSION

Most of the existing graph systems (e.g., Apache Giraph,-Pow
erGraph) follow thevertex-centricscatter-gather model involving
random access to topology data (i.e., vertices and edges$oare-
quire topology data to be in main memory for performance.oim-c
trast, X-Stream [28] has proposed tbdge-centricscatter-gather
model that can exploit sequential access to edge data, andlyo
requires both vertex data and update data to be in main memory
These two approaches are two extremes in terms of edge access

seconds, where 5(GB/s) means the sequential read perfoeman the former relies on only fine-grained (i.e., edge leveldmn ac-
of two PCI-E SSDs. Here, actual elapsed time of 196 seconds iscess, and the latter relies on only fine-grained sequentizéss
smaller than the calculated time of 228 seconds due to the pag (i.e., streaming edges). As a result, the latter approashatsg-
buffering mechanism in Algorithm 1. The performance®TS nificant performance penalty for traversal algorithms.(eBfS,
using two HDDs is completely bound by the I/O performance of SSSP) which the former approach does not have. For a lagje-sc
HDDs. When using two HDDs in the Strategy-P mode, its se- graph (e.g., YahooWeb) having a high diameter, X-Strearowgrs
quential read 1/0 bandwidth is about 330 GB. The elapsed tiime  a very large number of scatter-gather iterations, each a¢hwte-



quires streaming the entire edge list but doing little wakkcord-
ingly, for traversal algorithms for such a graph, X-Streaioh bt
finish in a reasonable amount of time [28]. GraphChi [19] Hnees t
similar problem, but shows a worse performance than X-8trea
due to requiring fully loading (not streaming) a shard filel aro
overlapping between disk I/O and computati@iTS is quite dif-
ferent from the above two extremes, since it exploits cegraied
(i.e., page level) sequential access, and at the same toaeses
grained (i.e., page level) random access. We have presthited

complexity. All the work mentioned above lack support fagke:
scale graphs that do not fit in the GPU’s limited device memory
However, many techniques addressed in the above work b&ong
micro-level parallel processing techniques and are odhabto
our methodGTS, and so they can be applied to processing each
topology page.

TOTEM [7,8] is the only work to process large-scale grapts an
exploit multiple GPUs, to the best of our knowledge. It gaotis
a graph into two parts: (1) the main memory part processed by

hybrid mechanism supporting both sequential and random accessesCPUs and (2) the device memory part processed by GPUs. Al-

in detail in Section 4.3, Algorithm 1, and Appendix A. Due to e
ploiting both,GTS requires streaming only the relevant pages for
traversal algorithms.

We discuss howGTS is differ from the streaming mechanism
used in X-Stream and other existing work in more detail. Like
other methods following the scatter-gather model, X-Streaeds
to update the data field of each vertex after each scattbegat
eration. In order to do that, it tries to maintain the wholetee
data including both read-only attributes and updatabhiates in
main memory. However, since the size of the whole vertex data
might not fit in main memory, X-Stream partitions the vertexia
edge data into multiple partitions, where each partition fiain
main memory, and performs the three phases of scatter, eshafl
gather for each partition (not two phases of scatter andegatin
order to update the vertex data of other partitions, theflehplhase
is essential. In the shuffle phase, X-Stream buildsufheatedata
structure, which is used for updating the vertex data siradgater.

In this scheme, both vertex data and update data take a stibkta

though it can handle large-scale graphs that other methratsot,

it still has three major drawbacks. First, it completely endilizes

the computational power of GPUs. It processes only a snah fr
tion of a graph by using GPUs. The remaining part of the graph
is processing by relatively slow CPUs. This underutiliaatbe-
comes more and more marked as the graph size increases, since
the size of the part processed by GPUs is fixed. Second, it it is
not very scalable in terms of the number of GPUs used. TOTEM
demonstrates the graph processing power of GPU is highar tha
that of CPUs, and so it concludes that using more GPUs instead
more CPUs are required for faster graph processing. Howerer

der the partitioning scheme like edge-cut, the number oédges
among main memory and multiple GPUs increases as the number
of GPUs increases, which means the amount of data to be commu-
nicated among main memory and GPUs also increases [9]. As a
result, the speedup tends to decrease as well. Third, iffisudt

for users to optimize the performance due to a lot of confippma
options. Different fromGTS, TOTEM requires a different set of

amount of main memory, and the computational overhead of the options for each graph algorithm and for each data set inraede

shuffle phase is also considerable. In contr@dtS separates the
data fields of vertices into read-only (i.e., RA) and upditébe.,
WA), and maintains the only and entire WA data in GPU mem-
ory. By minimizing the amount of data to be kept in memory, it
can keep the entire WA data in GPU memory even for billiorlesca
graphs, and moreover, do not need to build the update daiz str
ture and perform the shuffle phase. If the WA data is larger tha
single GPU memory, we can spread it to multiple GPUs’ memory
in Strategy-S. As long as the WA data can fit in GPUs’ memory,
GTS can perform high-performance streaming in the hybrid mech-
anism described above. Unlike X-Stream, it has no shuffleg@ha
and no write operations to secondary storage. It perforrad-re
only streaming from beginning to end, while X-Stream parfsr
a mixture of read and write streaming. It fully exploits sential
streaming bandwidth, while X-Stream only partially exfdoihe
bandwidth.

There are a number of graph processing methods using GPUs o
a single computer [7, 8,13, 15, 16, 24, 36]. The VWC method [15
proposes the virtual warp scheme that enables trading tvifemsn
workload imbalance and ALU underutilization with a single-p
rameter, the number of threads per virtual warp. It usuady p
titions a physical warp of 32 threads into multiple virtuahnps
of 4, 8, or 16 threads. Too large virtual warp could cause un-
used ALUs within a warp, which could limit the parallel parfo
mance of kernel executions. CuSha [16] adopts the shards for
mat [19] for solving the non-coalesced memory access pnobted
presents two graph representations: G-Shards and Coataden
Windows (CW). It focuses on fully utilizing the GPU compugin
power by processing multiple shards in parallel on GPUsastr-
ing multiprocessors. Medusa [36] proposes a programmangér
work that can simplify implementation of GPU programs foaygjn
processing. [24] presents a BFS parallelization methadfdlcases
on fine-grained task management constructed from efficiesit p
fix sum, which achieves an asymptotically opting(|V'| + | E|)

achieve good performance. If users do not carefully tunenalbof
options, its performance could be significantly degraddthohigh
TOTEM does not outperfor®TS, we consider that hybrid com-
putation using both CPUs and GPUs is potentially will be sigpe
to our methodSTS using only GPUs.

9. CONCLUSIONS

In this paper, we proposed a fast and scalable GPU-basel grap
processing method call€8iTS that can process even RMAT32 (64
billion edges) graphs very efficientl&TS fully exploits the com-
putational power of GPUs by processing the entire graphuasilyg
GPUs. To overcome the limit of GPU memory capacity and more-
over the limit of main memory capacity, we proposed a concept
of storing only updatable attribute data and moving topypldata.

The proposed method stores graphs in PCI-E SSDs and executes
a graph algorithm using thousands of GPU cores while stmgmi

rkopology data of graphs to GPUs via PCI-E interface. Foastiag

topology dataGTS exploits the asynchronous GPU streams (e.g.,
CUDA Streams), which could hide memory access latency from
GPUs to main memory and so utilize GPU’s computing power
more. For efficient streamind@>TS adopted and generalized the
slotted page format that divides a graph into fixed-sizesunih
terms of exploiting multiple GPUs and SSDs, we also proptsed
strategies, the strategy for performance and the stratagschla-
bility. GTS is fairly scalable in terms of the number of GPUs and
SSDs, and so, shows a stable speedup when adding a GPU or an
SSD to the machine. Through extensive experiments, we demon
strated thaG TS consistently and significantly outperforms the ma-
jor distributed graph processing methods, GraphX, Girapid
PowerGraph, and the state-of-the-art GPU-based methodEWOT
across wide range of benchmarks. Especially, we demoedttiaat
GTS can process an RMAT32 graph within a reasonable time in a
single machine that the existing distributed methods fafirocess

by using 30 machines of a total of about 2 TB memory.
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APPENDIX

In this appendix, we present the details on GPU kernel fanstof
GTS for two typical graph algorithms, BFS and PageRank, used in

the experimentsGTS requires two different kinds of GPU kernels
for processing SPs and LPs, as explained in Section 3.4 SiRs

Algorithm 2 BFS Kernel for SP

and LPs have a little different structure. Thus, we preseota Input:
of four kernels: two kernels #s _spand Kers_pfor BFS and two

kernels ker_spand Ker_pfor PageRank. Appendix A presents the
mapping table of the slotted page format required for undeding

the four GPU kernels.

A. MAPPING TABLE FROM RID TO VID

Each record ID (i.e. physical ID) in ADJLIST consists of arpai
of the page ID (ADJ_PID) and the slot number (ADJ_OFF) where
the corresponding vertex is located. For example, in FighD;
JLIST of vz in LP; containsrz, which points tovs in SRy, and
thus consists of a pair of 0 (ADJ_PID) and 2 (ADJ_OFF). Sithee t
graph algorithms usually require vertex IDs for traversedtéad
of record ID, they need a method to translate a record ID to the
corresponding vertex ID. For that purpose, The slotted gage 11:}
mat maintains a kind of mapping table from RID to VID, called 1,.
RVT in main memory. Fig. 12 shows RVT fa¥ in Fig. 1. In
RVT, there exists a tuple for each slotted page, and a tupisists
of a pair of START_VID and LP_RANGE, where START VID 14
means the first VID in the corresponding page, and LP_RANGE 15f
means the range of large page IDs. We can easily and quickly 17:
translate RID to VID by calculating RVT[ADJ_PID].START_®i

boo~NouRwNE

18:
+ ADJ_OFF for a given RID, i.e. (ADJ_PID, ADJ_OFF). For ex- 10:
ample,rz is (0,2) as explained above, and so its VID is calcu- 20:
lated by RVT[0].START_VID + 2 = 2. That isrz2’s VID is 2. 21:

In Appendix B, we denote the VID calculated using (ADJ_PID, 22:}

ished, curLevel, nextPIDSgsy) {
13: for i < W_OFF;i < ADJLIST_SZ;i < W_SZ+ do

SP; /* a small page */

LV; I* WA for level */

finished; /* flag for finishing traversal */
curLevel; /* current traversal level */
nextPIDSetpy; /* local nextPIDSet in GPU */

__kernel__ Kggs sSP, LV, finished, curLevel, nextPIDSgty) {
ID < THREAD_ID;

W_ID «+ ID/W_SZ;

W_OFF« ID % W_SZ;

while W_ID < SP.NUM_NODESIo

VID + SP[W_ID].VID;

ADJLIST_SZ«+ SP[W_ID].ADJLIST_SZ;

ADJLIST < SP[W_ID].ADJLIST;

if LV[VID] = curLevel then
expand_warp(W_OFF, ADJLIST_SZ, ADJLIST, LV, finished,
curLevel, nextPIDSepy);

device _ expand_warp(W_OFF, ADJLIST_SZ, ADJLIST, LV, fin-

ADJ_PID+ ADJLIST[i].PID;
ADJ_OFF+«+ ADJLIST[i].OFF;
ADJ_VID + RVT[ADJ_PID].START_VID+ADJ_OFF;
if LV[ADJ_VID] = NULL then
LV[ADJ_VID] « curLevel + 1;
nextPIDSetpy[ADJI_PID] « true;
finished« false;
threadfence_block();

ADJ_OFF) as ADJ_VID.

START_VID LP_RANGE

Po
P1)3
P2} 8

Algorithm 3 BFS Kernel for LP

Figure 12: The RVT table for mapping RID to VID. Input:

B. GPU KERNELS IN GTs

B.1 Kernel for BFS

We exploit the virtual warp-centric (VWC) technique [15] as
default technique for the BFS graph algorithm, where theatis in
a warp process the outgoing edges of a vertex simultaneoikly
gorithm 2 shows the GPU kernekKs_spfor processing SPs. Since
it is a kind of 6-join operator between topology data and attribute
vector, it takes SP and LV as inputs, where LV is WA for traaérs
levels of vertices. It also takes a flag finished and a curremet-
sal level curLevel, as in [15]. As the last input, it takes tbeal
nextPIDSet maintained in each GPU, denoted as nextPdpSet

P el e

LP; /* alarge page */

LV; /* WA for level */

finished; /* flag for finishing traversal */
curLevel; /* current traversal level */
nextPIDSetpy; /* local nextPIDSet in GPU */

__kernel__ Kggs HLP, LV, finished, curLevel, nextPIDSgty) {
ID + THREAD _ID;

VID «+ LP.VID;

while ID < LP.ADJLIST_SZdo

if LV[VID] = curLevel then

ADJ_PID «+ LP.ADJLIST[ID].PID;

ADJ_OFF+ LP.ADJLIST[ID].OFF;

ADJ_VID « RVT[ADJ_PID].START_VID+ADJ_OFF;

if LV[ADJ_VID] = NULL then
LV[ADJ_VID] « curLevel +1;
nextPIDSetpy[ADJ_PID] « true;
finished< false;

It is a bit vector where the number of bits is equal to the numbe
of pages, and a bit means that the corresponding page should
be visited next. The overall structure of the kernel is saimilith
that of the kernel in [15], since both follow the same VWC tech
nique. It first calculates the warp ID (W_ID) and the offsetlie



warp (W_OFF) for each thread (Lines 2-4). Then, each warp pro
cesses a single vertex in SP (Lines 5-12). A warp checks ttie-co
sponding VID, ADJLIST_SZ, and ADJLIST (Lines 6-8) and then
calls the expand_warp routine if the corresponding vertoukl

be traversed, i.e. LV[VID] is equal to curLevel (Lines 9-11)

The expand_warp routine processes all neighbor verticaBin
JLIST in awarp centric manner. Thatis, it processes thefirssZ
neighbor vertices, and then processes the next W_SZ neighbo
tices, and so on (Line 15). Each thread in a warp checks AIJ_PI
and ADJ_OFF of the corresponding neighbor vertex (Line4 2)6-
and calculates ADJ_VID (Line 18). If the corresponding heig
bor vertex ADJ_VID is not visited yet (Line 19), the threadsse
LV[ADJ_VID] to curLevel + 1 (Line 20) and sets the flag finished
to false (Line 22). The thread also sets the bit nextPIB&ADI_
PID] to true (Line 21) such that th& TS framework could asyn-
chronously copy the page ADJ_PID from main memory to GPU at
the next level traversal. Finally, the routine calls CUDAghread-
fence_block() function to synchronize all of the threadthimi the
warp (Line 29).

Algorithm 3 shows the GPU kernelds_.p for processing LPs.

It is basically similar to Krs_sp except that multiple warps for a
large page processes ADJLIST of the page together. Sinae a si
gle warp does not need to process an entire ADJLIST of a vertex
there is no loop like Line 15 in the g&s_spkernel. Instead, each
thread performs the body of the expand_warp routine gfsksp
directly (Lines 6-13) if the current vertex should be traest, i.e.
LV[VID] is equal to curLevel (Line 5). In Krs_p, Since there is

no calling of the warp-level routine like expand_warp in keenel,
there is no warp-level synchronization like __threadfembeck().

B.2 Kernel for PageRank

We exploit the edge-based method proposed in [17] in adiditio
to the VWC technique for the PageRank graph algorithm. In the
edge-based method, a GPU thread takes responsibility ftinlpa
updating the PageRank value of the source (or destinatimag of
an edge. Algorithm 4 shows the GPU kernelrKspfor processing
SPs. Since itis also a kind 6fjoin operator between topology data
and attribute vector, it takes SP and two required attribatgors
nextPR and prevPR as inputs. Since nextPR is WA, the kernel re
quires the entire nextPR. In contrast, prevPR is RA, and séeh
nel only requires the partial prevPR corresponding to tkergSP
as explained in Section 3.1. We denote such a subvectora®Bre
as prevPRi}:w]. Before calling the kernel Kz_sg each element of
nextPR is initialized tol"Td‘f in main memory, where df means the
damping factor. Thus, the kernel only needs to add the vdltleeo
remaining part of the PageRank equation to nextPR. Theneutli
Kpr_spis similar to that of ks _sp(Lines 2-8). A warp calls the
expand_warp routine in order to update the PageRank vatues f
the outgoing edges from VID (Line 9). The expand_warp raatin
processes all neighbor vertices in ADJLIST in a warp cemran-
ner, as in Krs_sp Each thread in a warp calculates ADJ_VID of
the corresponding neighbor vertex as in A.2 (Line 16) andw:al
lates the partial PageRank value for ADJ_VID with considgthe
edge between VID and ADJ_VID (Line 17). The calculated value
is added to nextPR[ADJ_VID]. Here, since multiple GPU thiza
could update nextPR[ADJ_VID] simultaneously, we should tie
atomicAdd operator to avoid a race condition. CUDA suppsets
eral atomic operators including atomicAdd. At the end ofritne-
tine, the synchronization function is called as ig:K sp(Line 19).

Algorithm 5 shows the GPU kerneldg& pfor processing LPs. It
is basically similar to ikr_sg except that multiple warps for a large
page processes ADJLIST of the page together. AsgirsKp, each

thread performs the body of the expand_warp routine ef &k
directly (Lines 4-7).

Algorithm 4 PageRank Kernel for SP
Input:  SP; /* a small page (for vertices:fw]) */
nextPR; /* WA */
prevPRp:w]; /* subvector of RA */

__kernel__ Kpr sfSP, nexPR, prevPR{w]) {
ID + THREAD_ID;
W_ID « ID/W_SZ;
W_OFF+« ID % W_SZ,
while W_ID < SP.NUM_NODESIo
VID « SP[W_ID].VID;
ADJLIST_SZ+«+ SP[W_ID].ADJLIST_SZ;
ADJLIST <+ SP[W_ID].ADJLIST;
expand_warp(W_OFF, ADJLIST_SZ, ADJLIST, VID, nextPR, pre
VPR:w]);
-}
11:

Ay
o

__device__ expand_warp(W_OFF, ADJLIST_SZ, ADJLIST, VID,
extPR, prevPR[:w]) {
12: for i < W_OFF;i < ADJLIST_SZ;i < W_SZ+ do

13:  ADJ_PID+< ADJLIST[i].PID;
14: ADJ_OFF« ADJLIST[i].OFF;
15:  ADJ_VID «+ RVT[ADJ_PID].START VID+ADJ_OFF;

16: atomicAdd(nextPR[ADJ_VID], df * | AD-
JLIST_SZ);
17: _ threadfence_block();

18:}

prevPR[VID]

Algorithm 5 PageRank Kernel for LP
Input: LP; /* alarge page (for vertex) */
nextPR; /* WA */
prevPRp]; /* subvector ofv */

1: __kemnel__ Kpr LH(LP, nexPR, prevPRY() {

2. ID «+ THREAD_ID;

3: while ID < LP.ADJLIST_SZdo

. ADJ_PID« LP.ADJLIST[ID].PID;

ADJ_OFF« LP.ADJLIST[ID].OFF;

ADJ_VID « RVT[ADJ_PID].START_VID+ADJ_OFF;
atomicAdd(nextPR[ADJ_VID], df * prevPR] / v.ADJLIST_S);

oNoaRr

C. OPTIONS OF TOTEM

Table 5 shows the ratios of graph data processed by GPUstto tha
by CPUs in TOTEM (GPU%:CPU%) when following the options
recommended by the authors. In general, as the size of a graph
increases, the size of the GPU partition decreases. Howiever
not for RMAT29 since the mapped memory options of TOTEM
allocates a part of the GPU partition as mapped memory [8].

D. ADDITIONAL GRAPH ALGORITHMS

In addition to BFS and PageRank, for a wider range of bench-
marks, we implement the following three additional grapgoal
rithms usingGTS: Single-Source Shortest Path (SSSP), Connected
Components (CC), and Betweenness Centrality (BC). It dsinates
the adaptability ofGTS. We select those three graph algorithms
since Giraph, GraphX, PowerGraph, and TOTEM commonly sup-
port them. Figure 13 shows the comparison results among five
methods (BC between two methods{sTS significantly outper-
forms other four methods for SSSP and CC, and also largely out
performs TOTEM for CC. Here, we perform the experiments of BC
using the default mode, i.e., the single node mode for bothoaks.



Table 5: Ratios of partition sizes in TOTEM (GPU%:CPU%).
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E. MICRO-LEVEL PARALLEL PROCESS-

(a) Comparison for Single-Source Shortest Path (SSSP)

ING

Figure 14 shows the performance®f S for BFS and PageRank 250 = GraphX 227
while changing the density (i.e., #vertices : #edges) of RIZA § 200 = Giraph
from 1:4 to 1:32 and changing a micro-level parallel protess % PowerGraph
technique for each slotted page. The three techniquesssisdun £ 150 :E%EM
Section 6.2 show similar performance for very sparse gréfhdo % 00 o 1078
However, for denser graphs, the edge-centric strategyedotns g 50 595
the vertex-centric strategy largely. The hybrid strategyprioves @ 50 28 238 189
the performance slightly (up to 6% for BFS and up to 24% for 2 o . L3 [ L1 [
PageRank) compared with the edge-centric one. Twitter et RMAT28

(b) Comparison for Connected Components (CC)
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(c) Comparison for Betweenness Centrality (BC)

Figure 13: Comparison for additional graph algorithms: SSS,

CC, and BC.
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Figure 14: Performance when changing micro-level parallel
processing techniques and graph density.



