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ABSTRACT
A fast and scalable graph processing method becomes increasingly
important as graphs become popular in a wide range of applica-
tions and their sizes are growing rapidly. Most of distributed graph
processing methods require a lot of machines equipped with ato-
tal of thousands of CPU cores and a few terabyte main memory
for handling billion-scale graphs. Meanwhile, GPUs could be a
promising direction toward fast processing of large-scalegraphs
by exploiting thousands of GPU cores. All of the existing meth-
ods using GPUs, however, fail to process large-scale graphsthat do
not fit in main memory of a single machine. Here, we propose a
fast and scalable graph processing methodGTS that handles even
RMAT32 (64 billion edges) very efficiently only by using a single
machine. The proposed method stores graphs in PCI-E SSDs and
executes a graph algorithm using thousands of GPU cores while
streaming topology data of graphs to GPUs via PCI-E interface.
GTS is fast due to no communication overhead and scalable due
to no data duplication from graph partitioning among machines.
Through extensive experiments, we show thatGTS consistently
and significantly outperforms the major distributed graph process-
ing methods, GraphX, Giraph, and PowerGraph, and the state-of-
the-art GPU-based method TOTEM.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Programming –
parallel programming; E.1 [Data Structures]: Graphs and net-
works

Keywords
Graph processing, GPUs, SSDs, Stream

1. INTRODUCTION
Graphs are widely used to model real-world objects in many dis-

ciplines such as social networks, web, business intelligence, biol-
ogy, and neuroscience, due to their generality of modeling.As the
sizes of real graphs are growing rapidly, fast and scalable graph
processing methods have become more important than ever before.
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In order to handle large-scale graphs efficiently, there have been
proposed a number of distributed graph processing methods.Apache
Giraph [1, 11] is an alternative implementation of Google’sPregel
[22]. It follows the Bulk-Synchronous Parallel (BSP) message pass-
ing model where all vertex kernels run simultaneously in a se-
quence of supersteps. Within a superstep, each kernel receives all
messages from the previous superstep and sends them to its neigh-
bors in the next superstep. Apache Spark GraphX [10, 33, 35] is
a graph-parallel framework built on top of Apache Spark. Power-
Graph [9, 20, 21] is a graph processing framework considering the
power-law distribution of real graphs. It follows the Gather-Apply-
Scatter (GAS) model, where Gather collects the informationabout
adjacent vertices/edges, Apply updates the new value of thecen-
tral vertex using the information, and Scatter updates the data on
adjacent edges using the new value. Although they follow their
own architectures and models, they all require a lot of machines
equipped with a total of thousands of CPU cores and a few terabyte
main memory for handling billion-scale graphs.

Meanwhile, the continuous advancement of GPU technology ma-
kes the theoretical computing power of modern computers ever-
increasing. Due to the much higher theoretical computing perfor-
mance of GPUs than CPUs, it becomes more and more important
to exploit GPUs in a wide range of problems requiring high per-
formance computing such as graph processing. Exploiting GPUs
could be a promising direction toward fast processing of large-scale
graphs mainly due to their implementation of the characteristics
of the Parallel Random Access Machine (PRAM) abstraction. The
PRAM abstraction has been widely used to investigate theoretical
performance of parallel graph algorithms. It assumes an infinite
number of processors and uniform memory latency. GPUs imple-
ment these characteristics with a very large number of hardware
threads and uniform memory latency. In addition, GPUs have mas-
sive memory bandwidth. Conventional CPUs are far from those
characteristics and only can traverse or calculate on a few vertices
at a time. On the contrary, GPUs can do on a much large number
of vertices at a time, without a severe memory bottleneck to shared
memory and without excessive concern about different memory la-
tency. Since many real graphs have millions or billions vertices,
GPUs are potentially well suited to fast processing of such graphs.

Nevertheless, there is a major challenge associated with exploit-
ing GPUs for processing large-scale graphs. Many real graphs do
not fit in the GPU device memory with this tendency becoming
more marked as the sizes of graphs are growing [7,8]. Lack of sup-
port for large-scale graphs beyond the capacity of device memory
is pointed out as one of the most critical problems of the existing
graph processing methods using GPUs [7,8,15]. There is almost no
study on solving this problem yet, in spite of its importance. To the
best of our knowledge, TOTEM [7,8] is the only work to systemat-



ically process a graph that does not fit in the GPU device memory.
To solve the problem, it partitions a graph into two parts, one part
in main memory and the other part in GPU device memory. GPUs
process the part in GPU device memory, while CPUs process the
part in main memory. Though it can handle large-scale graphs, it
has many fundamental drawbacks such as underutilization ofthe
computational power of GPUs, lack of scalability in terms ofthe
number of GPUs, and the difficulty of optimizing performancedue
to a lot of options. Furthermore, it still cannot process larger-scale
graphs beyond the capacity of main memory.

We propose a fast and scalable GPU-based graph processing
method calledGTS that can process even RMAT32 (64 billion
edges) graphs very efficiently.GTS fully exploits the computa-
tional power of GPUs by processing the entire graph only using
GPUs. It does not rely on the graph partitioning scheme and not
require a bunch of options for optimization. To overcome thelimit
of GPU memory capacity and moreover the limit of main mem-
ory capacity, we propose a concept ofstoring only updatable at-
tribute data and moving topology data. Here, the attribute data
means the information about vertices and edges that are required
and updated during execution of vertex kernels. The proposed
method stores graphs in PCI-E SSDs and executes a graph algo-
rithm using thousands of GPU cores while streaming topologydata
of graphs to GPUs via PCI-E interface. More specifically,GTS
first copies attribute data to GPU device memory, and then, pro-
cesses a graph algorithm by applying a user-defined GPU kernel
function on each piece of topology data being copied in a stream-
ing fashion from main memory to device memory. In GPUs, asyn-
chronous data transfer can be achieved by using the asynchronous
GPU streams (e.g., CUDA Streams), which could hide memory ac-
cess latency from GPUs to main memory and so utilize GPU’s
computing power more. For efficient streaming,GTS adopts the
slotted page format [12] that divides a graph into fixed-sizeunits.
In terms of exploiting multiple GPUs and SSDs, we also propose
two strategies, (1) the strategy for performance (shortly,Strategy-P)
for high performance with a limit on scalability and (2) the strat-
egy for scalability (shortly, Strategy-S) for high scalability with a
limit on performance.GTS can achieve higher performance com-
pared with the existing methods, due to no communication over-
head among machines and due to exploiting massive parallelism of
GPU cores. In addition, it could achieve higher scalabilitycom-
pared with the existing methods, due to no data duplication from
graph partitioning among machines and due to storing graphson
secondary storage, i.e., SSDs. For example, it can easily store and
process an RMAT33 graph (8 billion vertices and 128 billion edges)
only using 1 TB PCI-E SSDs, theoretically.GTS is also fairly scal-
able in terms of the number of GPUs and SSDs, and so, shows a
stable speedup when adding a GPU or an SSD to the machine. It is
becauseGTS almost uniformly distributes the units of graph data
to GPUs, which again perform graph processing almost indepen-
dently of each other.

The main contributions of this paper are as follows:

• We propose a novel concept ofstoring only updatable at-
tribute data and moving topology datathat is counter-intuitive
in terms of the conventional models (e.g., GAS) of storing
topology data and moving attribute data.

• We propose a parallel graph processing methodGTS on GPUs
that can perform graph algorithms very efficiently for large-
scale graphs (e.g., billions vertices) by fully exploitingthe
asynchronous GPU streams.

• We present two strategies that can improve the performance
or the scalability further by exploiting multiple GPUs and
multiple SSDs: Strategy-P and Strategy-S.

• Through extensive experiments, we demonstrate thatGTS
consistently and significantly outperforms the major distribut-
ed graph processing methods, GraphX, Giraph, and Power-
Graph, and the state-of-the-art GPU-based method TOTEM,
across wide range of benchmarks.

• Especially, we show thatGTS can process an RMAT32 graph
within a reasonable time in a single machine that the existing
distributed methods fail to process by using 30 machines of
a total of about 2 TB memory.

The rest of this paper is organized follows. Section 2 reviews the
data format adopted byGTS. In Section 3, we propose theGTS
method. In Section 4, we present two strategies for exploiting mul-
tiple GPUs and SSDs. In Section 5, we present the cost models of
GTS, and in Section 6, we address several implementation issues.
Section 7 presents the results of experimental evaluation,and Sec-
tion 8 discusses related work. Finally, Section 9 summarizes and
concludes this paper.

2. PRELIMINARIES
In this section, we explain the data formats proposed for stor-

ing graph data, especially with focusing on the format for storing
a graph on secondary storage (e.g., SSD). Most of real graphsare
known as to be sparse, and various kinds of in-memory formatsfor
a sparse graph have been proposed. They include Diagonal (DIA)
[13], ELLPACK (ELL) [2], Compressed Sparse Row (CSR), Com-
pressed Sparse Column (CSC), and Coordinate list (COO) [3].They
might have a limit on the size of graphs to process since they usu-
ally require a very long contiguous edge array in main memoryfor
large-scale graphs.

Besides, there is an external memory (i.e., out-of-core) graph for-
mat called theslotted page format[12]. It represents a graph in a
set of fixed-size slotted pages. A slotted page consists of two parts,
recordsandslots, where records grow forward from the start of the
page, but slots grow backward from the end of the page. A slot
consists of a vertex ID (logical ID), denoted as VID, and the start
offset of the corresponding record, denoted as OFF. A recordcon-
sists of the size of the adjacency list, denoted as ADJLIST_SZ, and
the adjacency list itself, denoted as ADJLIST. Here, the adjacency
list again consists of a list ofrecord IDs of neighbor vertices. A
record ID is aphysical IDconsisting of a pair of the page ID (of 2-
byte), denoted as ADJ_PID, and the slot number (of 2-byte) where
the corresponding vertex is located, denoted as ADJ_OFF. Byusing
physical IDs, graph algorithms can access to the physical locations
of neighbor vertices easily during traversal. This conceptof phys-
ical ID is commonly used for performance in database area [14].
The vertex IDs and record IDs are consecutive and ordered within
a page.

Figure 1 shows an example graphG and the slotted pages of
G. In Figure 1(a), the verticesv0, v1, andv2 have a relatively small
number of neighbor vertices, whilev3 has a relatively large number
of neighbor ones. Such skewness of the node degree distribution is
common in real graphs. The low-degree vertices like{v0, v1, v2}
can be stored in a single page SP0 as in Figure 1(b), which is called
a Small Page(SP). In contrast, a high-degree vertex likev3 might
not be stored in a fixed-size slotted page, but can be stored inmul-
tiple pages{LP1, LP2} instead as in Figure 1(c), which are called
Large Pages(LPs).

3. STREAMING GRAPH TOPOLOGY
In this section, we present the proposed methodGTS. Section

3.1 explains the concept of streaming topology, and Section3.2 de-
scribes the streaming scheme ofGTS in detail. Section 3.3 presents
the scheme to process various types of graph algorithms, andSec-
tion 3.4 shows the algorithm of theGTS framework.
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Figure 1: Example graphG and the slotted pages ofG.

3.1 Concept
In general, graph algorithms require both graph topology data

(shortly, topology data) and attribute data for vertices and/or edges.
For example, in addition to topology data, PageRank requires two
attribute vectors for vertices: a vector of the previous PageRank
values (shortly, prevPR) and a vector of the next PageRank val-
ues (shortly, nextPR). As another example, BFS requires oneat-
tribute vector for keeping traversal levels for vertices (shortly, LV).
The attribute vectors again can be divided into read-only ones and
read/write ones. For example, for PageRank, prevPR is a read-only
attribute vector, while nextPR is a read/write attribute vector, in a
specific iteration. For BFS, LV is a read/write attribute vector.

Most of the existing graph processing systems [9,20,22] follows
the concept that topology data is stored on main memory in a clus-
ter of machines, and attribute data is moved among machines (e.g.,
the Gather-Apply-Scatter (GAS) model). Without loss of general-
ity, the amount of attribute data to be moved is smaller than that
of topology data, and so, it is beneficial to follow that concept for
a distributed shared-memory system where each local memorycan
be accessed via a relatively slow interconnection network.How-
ever, it might not be true for a machine equipped with GPUs that
have limited device memory and are connected with main memory
via a much faster interconnection, i.e., PCI-E interface.

Here, we propose a concept ofstoring only updatable attribute
data and moving topology data, where a relatively small amount
of attribute data is stored in GPU’s limited device memory, and
topology data is moved via a high-speed interconnection. Moving
topology data from main memory or SSDs to GPUs takes some
amount of time even using PCI-E interconnection. However, we
can hide that time by processing a given graph algorithm simulta-
neously with moving attribute data. A graph algorithmθ is exe-
cuted through a corresponding user-defined GPUkernel function,
denoted as Kθ . In our method, Kθ is executed using thousands of
GPU cores for both a part of topology data and attribute data within
GPU device memory.

Intuitively, GTS first copies read/write attribute data to device
memory, and then, processes graph algorithms by copying read-
only attribute data and topology data in a streaming fashionto
device memory.GTS considers that each attribute vector is con-
ceptually partitioned into multiple subvectors, and topology data
consists of multiple fixed-size units, especially, in the slotted page
format described in Section 2. For example, prevPR for PageRank
can be conceptually decomposed into a lot of subvectors, where a
subvector corresponds to a slotted page in terms of the rangeof

vertex IDs. That is possible since the vertex IDs are consecutive
in each slotted page. Let attribute data beX and topology data
beY = {y1, · · · , yn}. Then, the amount of device memory re-
quired for processing the graph algorithmθ completely becomes
|X| + |yi| . It is obviously important to reduce|X| or |yi| in or-
der to process a large-scale graph with the limited size of device
memory. In general, since|X| >> |yi|, we focus on reducing|X|.
Between read-only attribute vector (shortly, RA) and read/write at-
tribute vector (shortly, WA),GTS keeps only WA in device mem-
ory for reducing the amount of device memory used. Since WA is
frequently and randomly updated during graph algorithm in gen-
eral, it is important to keep WA in device memory for performance.
However, RA is not updated during processing, and so can be fed
into device memory together with the corresponding topology data.
For example, for PageRank, we keep the entire nextPR in device
memory, but feed each subvector of prevPR together with the cor-
responding topology page to device memory.

Figure 2 shows the data flow ofGTS. We suppose WA is di-
vided intoW chunks (W = 1 in default), and RA is divided intoR
subvectors. We also suppose the numbers of small pages and large
pages areS andL, respectively. The number of units of RA, i.e.,
R is usually equal to S since most of the topology pages are SP,
which will be shown in Section 7.5. RAj represents the subvector
of RA corresponding to SPj. For WA,GTS performs the following
three steps: (1) copying WA to GPU device memory; (2) process-
ing graph algorithms while copying the topology pages{SPj} (or
{LPj}) together with the read-only attribute vectors{RAj} to GPU
device memory in a streaming fashion; and (3) copying WA, which
has been updated during graph processing, back to main memory
for (data) synchronization.
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Figure 2: Basic data flow ofGTS.

3.2 Asynchronous multiple streaming
GTS copies topology data from main memory to GPU device

memory via the PCI-E bus asynchronously in a streaming way. For
streaming topology data,GTS adopts the slotted page format, but
it is not a necessary condition thatGTS uses the slotted page for-
mat.GTS may adopt any format that can divide topology data into
fixed-size units for streaming.GTS rather adopts the slotted page
format since it considers workload balancing and coalescedmem-
ory access to some degree, which will be discussed in Section6.2.
For streaming RA, SP, and LP to device memory,GTS allocates
three kinds of streaming buffers in device memory, called RABuf,
SPBuf, and LPBuf, respectively, as in Figure 2. In addition,for
WA, GTS also allocates a chunk buffer called WABuf.

GTS exploits multiple GPU streams for streaming. Figure 3
shows the timeline of copy operations of attribute and topology data
to device memory. A CPU thread first transfers WA to WABuf.
Then, it starts multiple GPU streams, each of which performsa
series of operations, (1) copying SPj (or LPj) to SPBuf, (2) copy-
ing RAj to RABuf, and (3) executing the kernel function, repeat-



edly. In general, transfer operations for WA, RAj , and SPj to de-
vice memory cannot overlap with each other, at least in the current
GPU architecture [5]. Instead, they can overlap with kernelexe-
cution [5, 27]. Theoretically, the suitable number of streamsk can
be determined by using the ratio of the transfer time of SPj and
RAj to the kernel execution time. For example, in Figure 3, if the
kernel execution time isk times longer than transfer time, then the
transfer operation for SPk+1 would start right after the transfer op-
eration for RAk at timet. Table 1 shows the ratios of the transfer
time to the kernel execution time for BFS and PageRank on three
real data sets used in experimental evaluation. BFS has relatively
high ratios since it is not computationally intensive, while PageR-
ank has relatively low ratios since it is computationally intensive.
Thus, the optimalk seems to be dependent on graph algorithms.
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Figure 3: Timeline of copy operations in multiple streams.

Table 1: The ratios of transfer time to kernel execution timefor
BFS and PageRank on real data sets.

Algorithm Twitter [18] UK2007 [32] YahooWeb [34]

BFS 1:3 1:1 2:1
PageRank 1:20 1:6 1:4

However, in practice, the performance continuously increases
until using 32 streams, which will be shown in Section 5.4. This is
because the kernel execution becomes faster when SPj and RAj are
prepared in the queues of GPU in advance. The maximum number
of streams that can execute a kernel function concurrently is 32 in
the current CUDA technology [5]. After streaming and process-
ing all {SPj} for WA, GTS performs streaming and processing all
{LPj} for WA. The reason separating processing SPs from pro-
cessing LPs is reducing the kernel switching overhead amongSPs
and LPs. After processing all data streamed to GPU is done, the up-
dated WA is copied back to main memory for bulk synchronization,
which is omitted in Figure 3. Figure 4 shows the actual timelines
of copy operations for BFS and PageRank when using 16 streams
on a synthetic data, which is obtained by profiling. In Figure4,
the very short red colored bars indicate copying SPj and RAj to
device memory, while the long green colored bars indicate execut-
ing a kernel function. The timeline for PageRank in Figure 4(b) is
denser than that for BFS in Figure 4(a) since PageRank is compu-
tationally intensive, whereas BFS is not.

(a) Streaming for BFS (b) Streaming for PageRank

Figure 4: Actual timeline of copy operations for BFS and
PageRank when using 16 streams.

3.3 Handling BFS-like algorithms
We consider two major types of graph algorithms: (1) access-

ing a part of a graph via graph traversal and (2) accessing a whole
graph by linear scanning vertices and edges [12]. The formeralgo-
rithms are usually less computationally intensive, but causes non-
coalesced memory accesses due to the irregular structure ofgraphs.
They include Breadth-First Search (BFS), Single-Source-Shortest-
Path (SSSP), neighborhood, induced subgraph, egonet, K-core, and
cross-edges. BFS is the typical one [7,8,12], and hereafter, we de-
note them as BFS-like algorithms. The latter algorithms areusually
computationally intensive, and the scan order of vertices and edges
is not important in many cases. They include PageRank, degree
distribution, Random Walk with Restart (RWR), radius estimations,
and connected components. PageRank is the typical one [7, 8,12],
and hereafter, we denote them as PageRank-like algorithms.

The processing scheme described in Sections 3.1 and 3.2 is typ-
ically suitable for processing a single iteration of PageRank-like
graph algorithms that access the entire topology data once.How-
ever, BFS-like algorithms requires level-by-level traversal, where
a single level traversal accesses a very small portion of topology
data and does not require streaming the entire topology data. Each
traversal just requires streaming a set of topology pages containing
the vertices to be visited. For that purpose,GTS keeps the data
structure called nextPIDSet that contains the IDs of pages to be ac-
cessed at the next level. The local version of nextPIDSet is updated
in each GPU during a single level traversal and copied back tomain
memory, and then, a CPU thread merges the local versions intoa
single global version. At the next level, the CPU thread copies the
set of topology pages in the global nextPIDSet to GPU. As a result,
GTS can integrate two types of algorithms having quite different
access patterns into a single framework, which will be explained in
Section 3.4.

After GTS allocates four buffers WABuf, RABuf, SPBuf, and
LPBuf in the GPU device memory, there might be free memory
available in GPU device memory. Especially, for BFS, sinceGTS
allocates a small amount of WABuf due to small WA data, where
WA is just a LV attribute vector for vertices, there might be alot of
free memory left in GPU device memory. In that case,GTS tries to
maximize the performance of graph processing by caching topol-
ogy data, i.e., SPs and LPs. The BFS-like algorithms could access
the same topology pages repeatedly during traversal, and thus the
caching scheme could avoid unnecessary copying from main mem-
ory to device memory. In general, the cache hit rate increases as the
size of cache memory increases. When the total number of topol-
ogy pages of a graph isS + L, a naive approximation of the cache
hit rate usingB pages would beB/(S + L) for random graphs,
though it also depends on a caching algorithm used.GTS basically
adopts the LRU algorithm for the caching algorithm, but other al-
gorithms can be used as well.

3.4 Algorithm of the framework
In this section, we present the algorithm of theGTS framework.

Algorithm 1 presents the pseudo code of the framework. It per-
forms a user-defined kernel function KSP and KLP for a specific
graph algorithm on a graphG, where KSP is a kernel for SPs and
KLP is a kernel for LPs.GTS requires such two kinds of kernels
since SPs and LPs have a little different structure. As an initial-
ization step,GTS loads G into main memory (MM), creates the
streams for small pages and large pages for each GPU, and allo-
cates the buffers WABuf, RABuf, SPBuf, and LPBuf in the de-
vice memory (DM) of each GPU. Then, it sets nextPIDSet, a set
of page IDs to process next, depending on the type of the graph
algorithm. If the graph algorithm is of BFS-like, the page IDcon-



taining the start vertex is assigned to nextPIDSet. Otherwise, the
constant ALL_PAGES is assigned to it. The map data structure
cachedPIDMapi is initialized, which is used for storing the IDs of
cached pages within GPUi (Line 8). We note that cachedPIDMapi

is updated within GPUi during streaming topology data (Lines 14-
27) and copied back to main memory (Line 29). Here, MMBuf
indicates main memory buffer used for fetching the slotted pages
from SSDs to main memory.

Algorithm 1 Framework ofGTS
Input: GraphG, /* input graph */

KSP, /* GPU kernel ofQ for small pages */
KLP, /* GPU kernel ofQ for large pages */

Variable: nextPIDSet, /* set of page IDs to process next */
cachedPIDMap1:N ; /* cached page IDs in GPU1:N */
bufferPIDMap; /* buffered page IDs in MMBuf */

1: /* Initialization */
2: Create SPStream and LPStream for GPU1:N ;
3: Allocate WABuf, RABuf, SPBuf, LPBuf for GPU1:N ;
4: if Q is BFS-likethen
5: nextPIDSet← page ID containing start vertex;
6: else
7: nextPIDSet← ALL_PAGES;
8: cachedPIDMap1:N ← ∅;
9: if |G| < MMBuf then

10: LoadG into MMBuf;
11: Copy WA to WABuf of GPU1:N ;

12: /* Processing GPU kernel */
13: repeat
14: /* repeat Lines 15-31 for LPs */
15: for j ∈ nextPIDSet.SPdo
16: if j ∈ cachedPIDMaph(j) then
17: Call KSP for SPj in GPUh(j);
18: else ifj ∈ bufferPIDMapthen
19: Async-copy SPj in MMBuf to SPBuf in GPUh(j);
20: Async-copy RAj to RABuf in GPUh(j);
21: Call KSP for SPj in GPUh(j);
22: else
23: Fetch SPj from SSDg(j) to MMBuf;
24: Async-copy SPj in MMBuf to SPBuf in GPUh(j);
25: Async-copy RAj to RABuf in GPUh(j);
26: Call KSP for SPj in GPUh(j);
27: Thread synchronization in GPU;
28: Copy WA of GPU1:N to MMBuf;
29: Copy nextPIDSet1:N and cachedPIDMap1:N to MMBuf;
30: nextPIDSet← ∪1≤i≤NnextPIDSeti ;
31: until nextPIDSet= ALL_PAGES∨ nextPIDSet= ∅

Therepeat-untilloop (Lines 10-34) takes charge of level-by-level
traversal. For a PageRank-like algorithm, this loop is performed
only once. Lines 15-27 are performed for processing small pages
and performed similarly for processing large pages. We notethat
Lines 19-20 and 24-25 asynchronously transfer a topology page
SPj (or LPj) in nextPIDSet to a specific GPUh(j) according to the
return value ofh(j), which will be explained in Section 4. Here,
before transferring the page,GTS first checks if the page already
exists in the cache of GPUh(j) by looking up cachedPIDMaph(j)
(Line 16). We note that RAj for LP is a subvector of a single
attribute value since LPj deals with only a single vertex. While
executing a kernel, a new set of page IDs to process at the next
level is assigned to localnextPIDSeti in device memory of each
GPUi, which is copied back to MMBuf (Line 29), and then merged
into the global nextPIDSet (Line 30). The updated set of cached-
PIDMap1:N are also copied back to MMBuf and used in the next
level traversal. In the case of PageRank-like algorithms, both nextP-

IDSet and cachedPIDMap1:N are actually not used. The detailed
kernel functions for BFS and PageRank are explained in Appendix
B. In the case of PageRank, since the pseudo code in Algorithm1
is for a single iteration of PageRank, users might need to perform
Lines 13-31 as many times as necessary in their applications. Here,
at the end of every iteration, nextPR should be initialized after be-
ing copied to prevPR.

4. EXPLOITING MULTIPLE GPUS
In this section, we present two strategies for exploiting multi-

ple GPUs.GTS can be easily extended to exploit multiple GPUs.
We let the number of GPUs beN . Section 4.1 presents the strat-
egy for high performance with a limit on scalability, whereas Sec-
tion 4.2 presents the strategy for high scalability with a limit on
performance.

4.1 Strategy for performance
The first strategy ofGTS for multiple GPUs is copying the same

attribute data, especially WA, to all GPUs and copying a different
topology data to each GPU. Figure 5(a) shows the data flow scheme
of that strategy, which consists in four different steps. InStep 1,
GTS copies the same WA to all{GPU1, · · · ,GPUN}, which are
denoted as solid arrows. In Step 2, it executes a given GPU kernel
KSP while streaming a different〈 SPk, RAk 〉 to each GPUk for
1 ≤ k ≤ N , which are denoted as dotted arrows. More specifically,
it copies〈 SPi∗N+j , RAi∗N+j 〉 to GPUj for 0 ≤ i ≤ ⌈ S

N
⌉ − 1

and1 ≤ j ≤ N . LPs are processed in the same way. Here, each
GPU can execute the same GPU kernel function independently for
a different part of topology data. Steps 3 and 4 perform the data
synchronization of WA that has been updated during Step 2, which
are denoted as double-lined arrows.GTS exploits the peer-to-peer
memory copying feature of modern GPUs. When using multi-
ple GPUs, a naive synchronization method is performingN times
synchronization from GPUs to main memory directly, one time
per each GPU. This approach might suffer from synchronization
overhead asN increases.GTS largely reduces such synchroniza-
tion overhead by exploiting peer-to-peer memory copying among
GPUs, which speed is much faster than that of between GPU and
main memory. In Step 3, the WA data of each GPU is copied and
merged to the device memory of a master GPU (e.g., GPU1), and
then, in Step 4, the updated WA data in GPU1 is copied to main
memory.

In terms of the framework ofGTS (i.e., Algorithm 1), Step 1
corresponds to Line 11, Step 2 to Lines 16-26, and Steps 3-4 to
Line 28. In Step 2, for load balancing, the functionh(x) returns a
hash value for a page IDj of SPj (or LPj) such that the page SPj

(or LPj) is streamed to GPUh(i). Typically, GTS uses themod
function for the default hash function.

This strategy ofGTS potentially can achieve fairly linear par-
allel speedup with respect to the number of GPUs for graph pro-
cessing, as long as the capability of data streaming is sufficient.
Moreover, since the different topology data distributed over GPUs
have almost equal sizes, i.e., almost the same amount of workload
under this strategy, the speedup ratio can be fairly stable regard-
less of the characteristics of a graph (e.g., its size and itsdensity).
The capability of data streaming largely depends on (1) the speed
of PCI-E interface and (2) the I/O performance of SSDs. Underthe
current computer architecture, the I/O speed of SSDs (e.g.,about
up to 2 GB/sec) is much slower than that of PCI-E interface (e.g.,
16 GB/sec). Thus, the overall performance of this strategy is lim-
ited to the I/O performance of SSDs. To alleviate this performance
problem,GTS exploits multiple SSDs. In detail,GTS stores each
slotted page SPj of G (1 ≤ j ≤ S) in a specific SSDg(j), where



g(j) returns a hash value for a page IDj, and fetches the corre-
sponding page from SSDg(j) according to the I/O request at Line 23
in Algorithm 1. If the size ofG is smaller than main memory
buffer (MMBuf), fully loading G into MMBuf might be a better
method (Lines 9-10), especially for BFS-like algorithms. In that
case, the speed of PCI-E interface would become a performance
bottleneck.

Although this strategy shows high and stable performance of
fairly linear speedup with multiple GPUs, it could suffer from GPU’s
limited device memory. It could not process a graph algorithm re-
quiring WA larger than the size of a single GPU’s device memory.
For example, this strategy can process the PageRank algorithm only
up to RMAT30 using a GPU having 6 GB device memory.
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Figure 5: Two strategies ofGTS exploiting multiple GPUs.

4.2 Strategy for scalability
The second strategy ofGTS for multiple GPUs is copying a dif-

ferent attribute data, especially a different WAi chunk to each GPU
and copying the same topology data to all GPUs. Figure 5(b) shows
the data flow scheme of that strategy, which consists three steps. In
Step 1,GTS copies a different WAi to each GPUi for 1 ≤ i ≤ N ,
which are denoted as solid arrows. In Step 2, it executes a given
GPU kernel KSP while streaming the same〈 SPj, RAj 〉 to all
GPUs, which are denoted as dotted arrows. LPs are processed in
the same way. Here, each GPU can execute the same GPU kernel
function independently for a different part of attribute data. Step 3
performs the data synchronization of all{ WAi } that has been
updated during Step 2, which are denoted as double-lined arrows.
Since all WAi chunks are disjoint with each other,GTS cannot use
the peer-to-peer memory copying feature of GPUs. This strategy
just uses a naive synchronization method of performingN times
synchronization from GPUs to main memory directly, one timeper
each GPU.

In terms of the framework ofGTS, as in Section 4.1, Step 1
corresponds to Line 11, Step 2 to Lines 16-26, and Steps 3-4 to
Line 28. However, in Step 2, the functionh(x) returns a set{1, · · · ,
N} instead of a single hash value for a page IDj such that the page
SPj (or LPj) is streamed to all GPUs.

This strategy ofGTS tries to maximize the size of a graph to
process. Especially, it can achieve linear increase of the size of
a graph to process, with respect to the number of GPUs, as long
as the capacity of main memory or SSDs is sufficient. Since the
different attribute data distributed over GPUs have almostequal
sizes, and at the same time, the same topology data is fed intothose
GPUs, each GPU has almost the same amount of workload under
this strategy. That is, the workload of graph processing is well

balanced among GPUs regardless of the characteristics of a graph.
This strategy is logically analogous to using a single GPU oflarge
device memory. Thus, although increasing the number of GPUs,
the performance of graph processing itself does not change,and
the capability of data streaming to GPU also does not change.If we
have a large amount of main memory, and so, perform this strategy
without accessing to SSDs, the speed of PCI-E interface would be a
performance bottleneck. Otherwise, the I/O performance ofSSDs
would be a bottleneck. However, when we exploit multiple SSDs
as described in Section 4.1, the gap between the I/O performance
of SSDs and the logical speed of PCI-E interface is not so much
due to the fixed capability of data streaming to the logical single
GPU. That means the overall performance of this strategy would
not increase much even though processing an entire graph in main
memory.

Consequently, the strategy for scalability ofGTS is suitable to
process a relatively large-scale graph where its WA cannot fit in a
single GPU’s device memory by storing the graph on SSDs (e.g., an
RMAT32 graph in a machine of 6 GB GPUs and 500 GB SSDs). On
the contrary, the strategy for performance ofGTS (in Section 4.1)
is suitable to process a relatively small-scale graph whereits WA
can fit in a single GPU’s device memory by storing the graph in
main memory (e.g., an RMAT30 graph in a machine of 6 GB GPUs
and 128 GB main memory).

5. COST MODELS
In this section, we present the cost models ofGTS, which allow

us to understand the performance tendency and further improve the
performance later through the cost-based optimization. Weonly
consider major factors that could affect the performance ofGTS.
Since PageRank-like algorithms and BFS-like algorithms show a
quite different tendency, we present two cost models. For simplic-
ity, we present the cost models for Strategy-P without I/O.

5.1 Cost model for PageRank-like algorithms
The cost model for PageRank-like algorithms is given by

2|WA|

c1
+

|RA|+ |SP |+ |LP |

c2×N
+ tcall

(S + L

N

)

+

tkernel(SP|1| + LP|1|) + tsync(N). (1)

whereN is the number of GPUs,c1 is the communication rate
(e.g., in MB/s) between main memory and device memory in a
chunk copy mode,c2 is the communication rate in a streaming
copy mode,tcall(x) is the time overhead of calling a kernel func-
tion x times,tkernel(y) is the kernel execution time to processy
pages, andtsync(z) is the time overhead of synchronization among
z GPUs. Here,c1 is usually higher thanc2 for GPUs. For example,
in PCI-E 3.0 x16 interface,c1 is about 16 GB/s, whilec2 is about
6 GB/s. In Eq. 1,2|WA|

c1
indicates the total amount of time for copy-

ing all WA to device memory and copying the updated ones back
to main memory. That time does not decrease while using multiple
GPUs. The transfer time of|RA|+|SP|+|LP|

c2
is divided byN since the

data is transferred concurrently toN GPUs. The time overhead of
calling the kernel functiontcall(S + L) is also divided byN . The
termtkernel(SP|1|+LP|1|) indicates the last kernel execution time
for the last single SP and the last single LP that are not hidden by
data streaming. They are not negligible since PageRank-like algo-
rithms are usually computationally intensive. They also cannot be
divided byN since every GPU does the same thing. We note that
the time overheadtsync(N) increases asN increases in order to
synchronize WAs among more GPUs.

5.2 Cost model for BFS-like algorithms



The cost model is for BFS-like algorithms is given by

2|WA|

c1
+

depth
∑

l=0

(

|RA{l}|+ |SP{l}|+ |LP{l}|

c2×N × dskew

×(1− rhit) + tcall
(S{l} + L{l}

N × dskew

)

)

. (2)

where depth is the number of traversal levels, SP{l} is a set of
small pages visited at anl-th level of traversal,dskew is the degree
of workload skewness (i.e., imbalance) among GPUs, andrhit is
the cache hit rateB

S+L
discussed in Section 3.3. The operations in

the braces at different levels of traversal cannot overlap with each
other due to synchronization barrier, and thus the total amount of
time is just a sum of the times from level 0 to level depth. The

transfer time of data
|RA{l}|+|SP{l}|+|LP{l}|

c2
is divided byN due to

usingN GPUs, and moreover divided bydskew, which is between
1
N

(most imbalanced) and 1 (most balanced). We need to consider
this factor since page access patterns of BFS-like algorithms might
not be quite balanced different from PageRank-like algorithms. In
the most imbalanced case, the transfer time of data is the same
with that of using only one GPU. The term (1-rhit) represents the
caching effect, whererhit is between 0 (no cache hit) and 1 (all
cache hits). There is no termtkernel(y) in this cost model since the
kernel execution time of BFS-like algorithms is not a major factor.
There is also no termtsync(z) since the size of WA to be synchro-

nized (e.g., LV) is usually negligible. In the termtcall(
S{l}+L{l}

N×dskew

,
S{l}) indicates the number of small pages visited at anl-th level of
traversal.

6. IMPLEMENTATION
6.1 Data format for trillion-scale graphs

In terms of the slotted page format, although the one proposed
in [12] is useful for representing a graph topology data for sec-
ondary storage, there is a clear limit to the maximum size of agraph
to represent. The physical ID of 4-byte (2 bytes for page ID and 2
bytes for slot number) can theoretically represent a graph of up to
232 = 4 billion vertices. In practice, however, it fails to represent
an RMAT30 graph of 1 billion vertices and 16 billion edges due
to the two-level addressing scheme (of page ID and slot number)
and the skewness of the node degree distribution. Thus, in order
to handle even a trillion-scale graph, we slightly generalize the ex-
isting format such thatp-byte page ID (ADJ_PID) andq-byte slot
number (ADJ_OFF) are used for addressing. For example, when
considering the physical ID of 6-byte, there are three possible con-
figurations as in Table 2, where(p = 2, q = 4) means a small
number of large-sized pages,(p = 3, q = 3) a medium number
of midium-sized pages, and(p = 4, q = 2) a large number of
small-sized pages. In the table, the maximum page size is calcu-
lated under the assumption that ADJLIST_SZ is of 4-byte, VID
of 6-byte, and OFF of 4-byte. Among configurations, we choose
(p = 3, q = 3) and implement our method using 64 MB page size,
since bothp andq are well-balanced, and the page size of 64 MB
is compatible with the default block size widely used in manybig
data framework such as Hadoop [31] and Spark.

Table 2: Three possible configurations of physical ID of 6-byte.
p q max. page ID max. slot number max. page size

2 4 64 K 4 B 80 GB
3 3 16 M 16 M 320 MB
4 2 4 B 64 K 1.25 MB

6.2 Micro-level parallel processing
GTS mainly focuses on coarse-granular or macro-level paral-

lel graph processing for handling large-scale graphs that do not
fit in GPU device memory. However, whenGTS calls a given
GPU kernel on topology data page-by-page, the GPU kernel can
apply various kinds of fine-granular or micro-level parallel graph
processing techniques to each page. The kernel can apply a bet-
ter/different technique to each page depending on the characteris-
tics of the page (e.g., density, i.e., the ratio of the numberof vertices
to the number of edges within a page).

For example, we exploit the VWC technique [15] as a default
technique for processing each slotted page, where the threads in
each warp process the outgoing edges of each vertex simultane-
ously. We presents the GPU kernels for BFS and PageRank exploit-
ing the VWC technique in Appendix B. We denote the VWC tech-
nique as edge-centric in this paper. On the contrary to edge-centric,
we can use another micro-level technique that makes each GPU
thread process each vertex and its entire outgoing edges. Wede-
note that technique as vertex-centric. Then, we can consider a hy-
brid micro-level technique combining both edge-centric and vertex-
centric. In general, the vertex-centric technique might besuitable
for very sparse graphs where each vertex has only few outgoing
edges, while the edge-centric one might be suitable for less-sparse
graphs. The hybrid technique can handle both types of graphsby
applying a different micro-level technique to each page depending
on the density of the page. We will show the effectiveness of each
technique in Appendix E.

7. PERFORMANCE EVALUATION
In this section, we present experimental results in four categories.

First, we evaluate the performance ofGTS compared with the state-
of-the-art distributed graph processing methods, Apache Giraph
[1,11], Apache Spark GraphX [10,33,35], PowerGraph (GraphLab
v2.2) [9, 20, 21], and Naiad [23, 25] to show the superiority of
our method. Second, we evaluate the performance ofGTS com-
pared with the state-of-the-art CPU-based graph processing meth-
ods, Ligra [29], Ligra+ [30], and Galois [26], to show the superior-
ity of our method. For reference, we also evaluate the performance
of the parallel graph processing method using CPUs called MTGL
[2], which is widely used for comparison [36]. Third, we evaluate
the performance ofGTS compared with the state-of-the-art GPU-
based graph processing method, TOTEM [7,8], to show the superi-
ority of our method. To the best of our knowledge, TOTEM is the
only method to process large-scale graphs that do not fit in GPU
device memory and also to exploit multiple GPUs. For reference,
we also evaluate the performance of Cusha [16] and MapGraph [6],
which can process only the graph data that can fit in GPU memory.
Fourth, we evaluate the performance ofGTS while varying strate-
gies (of Section 4), storage types (i.e., SSD and HDD), the number
of streams, and the densities of graphs to show the characteristics
of GTS.

7.1 Experimental setup
For experiments, we use both synthetic and real datasets. For

synthetic datasets, we generate scale-free graphs following a power
law degree distribution by using RMAT [4]. We generate from
RMAT27 to RMAT32, where the ratio of the number of vertices
to the number of edges is set to 16. For real datasets, we use
three well-known graphs of Twitter [18], UK2007 [32], and Ya-
hooWeb [34], which all have different sizes and characteristics.
Table 3 shows the basic statistics of those data sets. ForGTS,



we use(p = 2, q = 2) in Section 6.1 for storing RMAT27-29
graphs and real graphs since their sizes are relatively small. In
the table, #SP and #LP mean the number of small pages and that
of large pages, respectively, under the corresponding configuration
(p = 2, q = 2). Most of topology pages are small pages in both
synthetic and real graphs. We use(p = 3, q = 3) for storing
RMAT30-32, where there is no LP due to the large page size of
64 MB.
Table 3: Statistics of graph datasets used in the experiments.

data #vertices #edges statistics forGTS
(p, q) #SP #LP

RMAT27 128 M 2,048 M (2,2) 9,724 58
RMAT28 256 M 4,096 M (2,2) 19,533 62
RMAT29 512 M 8,192 M (2,2) 38,747 937

RMAT30 1 B 16 B (3,3) 1,786 0
RMAT31 2 B 32 B (3,3) 3,584 0
RMAT32 4 B 64 B (3,3) 7,175 0

Twitter 42 M 1,468 M (2,2) 5,418 1,029
UK2007 106 M 3,739 M (2,2) 15,484 0

YahooWeb 1,414 M 6,636 M (2,2) 32,807 0

We summarize the statistics of the size of WA data versus the size
of topology data in the slotted page format in Table 4. We can see
the ratio of the WA data to the topology data is very small, which
is between 1.7% and 10%. The WA data for up to RMAT32 can
fit in two NVIDIA TITAN X GPUs’ memory (i.e., 24 GB), except
RMAT32 for CC.
Table 4: Statistics of the sizes of WA data versus topology data
in the slotted page format (GByte).

data topology WA
BFS PageRank SSSP CC

RMAT28 20 0.5 1 1 2
RMAT29 40 1 2 2 4
RMAT30 114 2 4 4 8
RMAT31 229 4 8 8 16
RMAT32 459 8 16 16 32

We conduct all the experiments of four distributed graph pro-
cessing methods on the same cluster of one master node and 30
slave nodes connected via Infiniband QDR (40 Gbps), each node
of which is equipped with two Intel Xeon 8-core 2.60 GHz CPUs,
64 GB memory, and two 3 TB HDDs (RAID 0). The cluster has a
total of 480 CPU cores and 1,920 GB memory. We also conduct
all the experiments of four CPU-based methods and four GPU-
based methods on the same workstation equipped with two Intel
Xeon E5-2687W 3.1GHz CPUs of eight cores, 128 GB main mem-
ory, two NVIDIA GTX TITAN X GPUs of 12 GB device memory,
and two Fusion-io’s PCI-E SSD. The CPUs and GPUs are con-
nected with PCI-E 3.0 x16 interface. For graph processing,GTS
uses only GPUs, while TOTEM uses both two CPUs and GPUs.
All CPU-based methods use 16 threads after turning off the Hyper-
Threading (HT) option for performance.

In terms of software versions and configurations, we use Scala
2.11.7 and Spark 1.5.1 for GraphX, MPI ICC 14.0.0 for Power-
Graph, and Hadoop 1.2.1 for all three distributed methods. For
Giraph, we set the size of mapper memory to 60 GB. For Spark, we
set the size of executor memory to 60 GB. Naiad requires the.NET
framework, and so, we use Mono (JIT compiler version 3.2.8) for
running Naiad on Linux. For MTGL, Galois, Ligra, Ligra+, TOTEM,
CuSha, and MapGraph, we download their latest source codes.We
compile all single-machine methods with the same optimizedop-
tion of -O3 with gcc 4.9 and CUDA 7.5. If a method requires its

own data format, we convert graph data to its own format (e.g., Ga-
lois, Ligra, Ligra+, CuSha, and MapGraph). Different fromGTS,
TOTEM requires a different set of options for each graph algorithm
and each data set in order to achieve the best performance [8]. We
use the sets of options recommended by the authors of TOTEM
for most of experiments. We also have found Naiad often failed to
process graph queries due to lack of memory, and so, adjustedits
configuration to achieve its best scalability and performance (e.g.,
sizes of heaps and arrays).

7.2 Comparison with Distributed Methods
Figure 6 shows the comparison results among GraphX, Giraph,

PowerGraph, Naiad, andGTS, for BFS and PageRank.Y -axis
represents the elapsed times in seconds (in log-scale), andO.O.M
means out of memory error. In the case of PageRank, we measure
the total elapsed times of ten iterations. For four distributed meth-
ods, we measure the elapsed time, excluding loading and finaliza-
tion times. ForGTS, we measure the elapsed times between start-
ing reading the first page from main memory (for real graphs and
RMAT28-30) or SSDs (for RMAT31-32) and showing the query re-
sults. Here, for real graphs and RMAT28-30, since they can fitin
main memory, we exclude loading time (Lines 1-10 in Algorithm 1)
for a fair comparison. We set the buffer size ofGTS to 20% of a
graph size for RMAT31 and RMAT32 (e.g., 45 GB for RMAT31).

For all datasets used,GTS significantly outperforms the dis-
tributed graph processing methods using 30 machines, for both
BFS and PageRank. Moreover,GTS shows the best scalability
among the methods compared. OnlyGTS can process all graphs
of up to RMAT32 for both BFS and PageRank. Among four dis-
tributed methods, Naiad shows the worst scalability, Giraph shows
the worst performance, and PowerGraph the best scalabilityand
performance, in general. The reason that the processing time of
GTS rapidly increases between RMAT30 and RMAT31 is due to
including I/O time of SSDs and changing the strategy from per-
formance (of Section 4.1) to scalability (of Section 4.2). Theoreti-
cally, the processing time ofGTS should increase linearly between
RMAT31 and RMAT32 sinceGTS uses the secondary storage and
the same strategy for both datasets, but it actually does not. This is
because there are higher-degree vertices in RMAT32, and theper-
formance of GPUs tends to be degraded (e.g, down-clocking) due
to overheat when processing for a long time.

7.3 Comparison with CPU-based Methods
Figure 7 shows the comparison results among MTGL, Galois,

Ligra, and Ligra+, andGTS, for BFS and PageRank. In the fig-
ure, exceptGTS, there is no results for relatively large-scale graphs
such as RMAT29-30 and YahooWeb, since the CPU-based methods
cannot load data into main memory or process graph algorithms
due to lack of main memory. Among the CPU-based methods, Ga-
lois, Ligra, and Ligra+ have significantly outperformed themulti-
threaded graph library (MTGL) in terms of both the elapsed time
and the size of a graph to process, except the case of Twitter for
PageRank. Among three CPU-based methotds, Ligra and Ligra+
show a better performance than Galois, except the case of UK2007
for BFS. Ligra shows a similar performance with Ligra+. However,
we could not execute Ligra+ for UK2007, RMAT27, and RMAT28,
due to segmentation fault errors, which were executed success-
fully in Ligra. We guess the Ligra+ source code is not stable yet.
Compared withGTS, either Galois or Ligra slightly outperforms
GTSfor relatively small graphs for BFS. This is because the CPU-
based methods perform edge-level random access for traversal al-
gorithms, whileGTS performs page-level random access with data
transfer overhead between main memory and GPUs. For relatively
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Figure 6: Comparison with GraphX, Giraph, PowerGraph, and Naiad for BFS and PageRank (Y -axis is log-scale).

large graphs (e.g., YahooWeb, RMAT29-30), onlyGTS could pro-
cess BFS. For PageRank,GTS significantly outperforms all CPU-
based methods in terms of both the elapsed time and the size ofa
graph to process.
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Figure 7: Comparison with MTGL, Galois, Ligra, and Ligra+
for BFS and PageRank.

7.4 Comparison with GPU-baesd Methods
Figure 8 shows the comparison results among MapGraph, CuSha,

TOTEM, andGTS, for BFS and PageRank. Both CuSha and Map-
Graph can process only the graph data that can fit in GPU mem-
ory, and so, the size of a graph to process is very small. CuSha
can process BFS only up to Twitter data. It cannot process other

data (e.g., RMAT27) due to lack of GPU memory. We expected
CuSha would be faster thanGTS as long as a graph could fit in
GPU memory. However, CuSha was slower thanGTS, and even
than TOTEM for Twitter. It cannot process PageRank for all graphs
tested, since PageRank requires more memory than BFS due to pre-
vPR and nextPR. MapGraph is worse than CuSha in terms of scal-
ability. It cannot process even BFS for Twitter. It can just process
a tiny graph like LiveJournal. It is because the Market Matrix for-
mat of MapGraph is less space-efficient than the G-Shard format of
CuSha.

(a) Comparison results for BFS

(b) Comparison results for PageRank (#iterations = 10)
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Figure 8: Comparison with TOTEM, MapGraph, and CuSha
for BFS and PageRank.



We compare the performance ofGTS with the best performance
of TOTEM using the set of options carefully selected. In the case of
TOTEM, we can minimize the amount of graph data processed by
slower processors, i.e., CPUs, by fitting as much graph data as pos-
sible in device memory, and thus, maximize its performance.Ap-
pendix C shows the set of options including the ratios of graph data
processed by GPUs to that by CPUs in TOTEM (GPU%:CPU%),
most of which are the ones recommended by the authors. For
PageRank, TOTEM slightly outperformsGTS for relatively small-
scale graphs such as RMAT27, Twitter, and UK2007.GTS, how-
ever, significantly outperforms TOTEM for large-scale graphs such
as RMAT29. For BFS,GTS consistently outperforms TOTEM.
Here, TOTEM cannot process YahooWeb due to some bugs, and
so, there is no corresponding result. In addition, TOTEM cannot
process RMAT30-32 since it relies on in-memory data format re-
quiring a contiguous array in main memory. We note thatGTS
processes PageRank for RMAT29 only in about 59 seconds, which
indicates the graph processing speed ofGTS is about 7 GB/s, since
the size of RMAT29 is about 40 GB in the slotted page format, and
the number of PageRank iterations is ten in the experiments.We
also note thatGTS shows the performance of up to 1,500 MTEPS
(millions traversed edges per second) for Twitter.

7.5 Characteristics ofGTS

Figure 9 shows the performance ofGTS while changing the
strategy explained in Section 4 for RMAT30. Strategy-P indicates
the strategy for performance in Section 4.1, and Strategy-Sthe
strategy for scalability in Section 4.2. Both strategies show similar
performance with each other when using 1 SSD or 2 HDDs since
the I/O performance is a bottleneck. However, Strategy-P shows a
slightly better performance than Strategy-S when using main mem-
ory or 2 SSDs due to no or less I/O bottleneck.
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Figure 9: Comparison between two strategies for BFS and
PageRank (RMAT30).

In terms of the overall performance, we note that the speed of
PCI-E bus becomes a bottleneck in memory setting, and the I/O
performance of PCI-E SSDs becomes a bottleneck in SSD setting.
For example, for ten iterations of PageRank using RMAT30,GTS
in memory setting takes about 153 seconds, which is approximately
equal to114 × 10 ÷ 6 = 190 seconds, where 6 means the com-
munication rate in a streaming copy modec2 in Section 5.1. Here,
actual elapsed time of 153 seconds is smaller than the calculated
time of 190 seconds due to caching mechanism described in Algo-
rithm 1. For another example,GTS using two SSDs takes about
196 seconds, which is approximately equal to114× 10÷ 5 = 228
seconds, where 5 (GB/s) means the sequential read performance
of two PCI-E SSDs. Here, actual elapsed time of 196 seconds is
smaller than the calculated time of 228 seconds due to the page
buffering mechanism in Algorithm 1. The performance ofGTS
using two HDDs is completely bound by the I/O performance of
HDDs. When using two HDDs in the Strategy-P mode, its se-
quential read I/O bandwidth is about 330 GB. The elapsed timeof

PageRank for RMAT30 is about 2,843 seconds, where the calcu-
lated time is114 × 10 ÷ 0.33 = 3, 454 seconds. Here, actual
elapsed time of 2,843 seconds is smaller than the calculatedtime of
3,454 seconds due to the page buffering mechanism.

Figure 10 shows the performance ofGTS while varying the
number of streams for RMAT26-29. The performance increases
steadily as the number of streams increases for all data sets. Even
for BFS where the ratios of transfer time to kernel executiontime
are much smaller than 32, it does due to the reason explained in
Section 3.2.
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Figure 10: Performance when varying the number of streams.

Figure 11(a) shows the performance ofGTS for BFS while vary-
ing the cache size from 32 MB to 5,120 MB, and Figure 11(b) shows
the corresponding cache hit rates. For RMAT29, there is no re-
sult at the cache size 5,120 MB due to a large size of WABuf. We
can easily adjust the size of cache since it is allocated by a CPU
thread (i.e., the framework thread ofGTS). For example, for the
cache of 1,024 MB,GTS allocates the array of 16 slotted pages of
64 MB within GPUi and make cachedPIDMapi maintain up to 16
page IDs. In Figure 11(b), the cache hit rates increase linearly as
the cache sizes increase, but decrease linearly as the sizesof topol-
ogy data increase, as discussed in Section 3.3.
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Figure 11: Effectiveness of caching for BFS.

8. RELATED WORK AND DISCUSSION
Most of the existing graph systems (e.g., Apache Giraph, Pow-

erGraph) follow thevertex-centricscatter-gather model involving
random access to topology data (i.e., vertices and edges), and so, re-
quire topology data to be in main memory for performance. In con-
trast, X-Stream [28] has proposed theedge-centricscatter-gather
model that can exploit sequential access to edge data, and so, only
requires both vertex data and update data to be in main memory.
These two approaches are two extremes in terms of edge access:
the former relies on only fine-grained (i.e., edge level) random ac-
cess, and the latter relies on only fine-grained sequential access
(i.e., streaming edges). As a result, the latter approach has a sig-
nificant performance penalty for traversal algorithms (e.g., BFS,
SSSP) which the former approach does not have. For a large-scale
graph (e.g., YahooWeb) having a high diameter, X-Stream executes
a very large number of scatter-gather iterations, each of which re-



quires streaming the entire edge list but doing little work.Accord-
ingly, for traversal algorithms for such a graph, X-Stream did not
finish in a reasonable amount of time [28]. GraphChi [19] has the
similar problem, but shows a worse performance than X-Stream,
due to requiring fully loading (not streaming) a shard file and no
overlapping between disk I/O and computation.GTS is quite dif-
ferent from the above two extremes, since it exploits coarse-grained
(i.e., page level) sequential access, and at the same time, coarse-
grained (i.e., page level) random access. We have presentedthis
hybridmechanism supporting both sequential and random accesses
in detail in Section 4.3, Algorithm 1, and Appendix A. Due to ex-
ploiting both,GTS requires streaming only the relevant pages for
traversal algorithms.

We discuss howGTS is differ from the streaming mechanism
used in X-Stream and other existing work in more detail. Like
other methods following the scatter-gather model, X-Stream needs
to update the data field of each vertex after each scatter-gather it-
eration. In order to do that, it tries to maintain the whole vertex
data including both read-only attributes and updatable attributes in
main memory. However, since the size of the whole vertex data
might not fit in main memory, X-Stream partitions the vertex and
edge data into multiple partitions, where each partition can fit in
main memory, and performs the three phases of scatter, shuffle, and
gather for each partition (not two phases of scatter and gather). In
order to update the vertex data of other partitions, the shuffle phase
is essential. In the shuffle phase, X-Stream builds theupdatedata
structure, which is used for updating the vertex data structure later.
In this scheme, both vertex data and update data take a substantial
amount of main memory, and the computational overhead of the
shuffle phase is also considerable. In contrast,GTS separates the
data fields of vertices into read-only (i.e., RA) and updatable (i.e.,
WA), and maintains the only and entire WA data in GPU mem-
ory. By minimizing the amount of data to be kept in memory, it
can keep the entire WA data in GPU memory even for billion-scale
graphs, and moreover, do not need to build the update data struc-
ture and perform the shuffle phase. If the WA data is larger than the
single GPU memory, we can spread it to multiple GPUs’ memory
in Strategy-S. As long as the WA data can fit in GPUs’ memory,
GTS can perform high-performance streaming in the hybrid mech-
anism described above. Unlike X-Stream, it has no shuffle phase
and no write operations to secondary storage. It performs read-
only streaming from beginning to end, while X-Stream performs
a mixture of read and write streaming. It fully exploits sequential
streaming bandwidth, while X-Stream only partially exploits the
bandwidth.

There are a number of graph processing methods using GPUs on
a single computer [7, 8, 13, 15, 16, 24, 36]. The VWC method [15]
proposes the virtual warp scheme that enables trading off between
workload imbalance and ALU underutilization with a single pa-
rameter, the number of threads per virtual warp. It usually par-
titions a physical warp of 32 threads into multiple virtual warps
of 4, 8, or 16 threads. Too large virtual warp could cause un-
used ALUs within a warp, which could limit the parallel perfor-
mance of kernel executions. CuSha [16] adopts the shards for-
mat [19] for solving the non-coalesced memory access problem and
presents two graph representations: G-Shards and Concatenated
Windows (CW). It focuses on fully utilizing the GPU computing
power by processing multiple shards in parallel on GPU’s stream-
ing multiprocessors. Medusa [36] proposes a programming frame-
work that can simplify implementation of GPU programs for graph
processing. [24] presents a BFS parallelization method that focuses
on fine-grained task management constructed from efficient pre-
fix sum, which achieves an asymptotically optimalO(|V | + |E|)

complexity. All the work mentioned above lack support for large-
scale graphs that do not fit in the GPU’s limited device memory.
However, many techniques addressed in the above work belongto
micro-level parallel processing techniques and are orthogonal to
our methodGTS, and so they can be applied to processing each
topology page.

TOTEM [7,8] is the only work to process large-scale graphs and
exploit multiple GPUs, to the best of our knowledge. It partitions
a graph into two parts: (1) the main memory part processed by
CPUs and (2) the device memory part processed by GPUs. Al-
though it can handle large-scale graphs that other methods cannot,
it still has three major drawbacks. First, it completely underutilizes
the computational power of GPUs. It processes only a small frac-
tion of a graph by using GPUs. The remaining part of the graph
is processing by relatively slow CPUs. This underutilization be-
comes more and more marked as the graph size increases, since
the size of the part processed by GPUs is fixed. Second, it it is
not very scalable in terms of the number of GPUs used. TOTEM
demonstrates the graph processing power of GPU is higher than
that of CPUs, and so it concludes that using more GPUs insteadof
more CPUs are required for faster graph processing. However, un-
der the partitioning scheme like edge-cut, the number of cutedges
among main memory and multiple GPUs increases as the number
of GPUs increases, which means the amount of data to be commu-
nicated among main memory and GPUs also increases [9]. As a
result, the speedup tends to decrease as well. Third, it is difficult
for users to optimize the performance due to a lot of configuration
options. Different fromGTS, TOTEM requires a different set of
options for each graph algorithm and for each data set in order to
achieve good performance. If users do not carefully tune a bunch of
options, its performance could be significantly degraded. Although
TOTEM does not outperformGTS, we consider that hybrid com-
putation using both CPUs and GPUs is potentially will be superior
to our methodGTS using only GPUs.

9. CONCLUSIONS
In this paper, we proposed a fast and scalable GPU-based graph

processing method calledGTS that can process even RMAT32 (64
billion edges) graphs very efficiently.GTS fully exploits the com-
putational power of GPUs by processing the entire graph onlyusing
GPUs. To overcome the limit of GPU memory capacity and more-
over the limit of main memory capacity, we proposed a concept
of storing only updatable attribute data and moving topology data.
The proposed method stores graphs in PCI-E SSDs and executes
a graph algorithm using thousands of GPU cores while streaming
topology data of graphs to GPUs via PCI-E interface. For streaming
topology data,GTS exploits the asynchronous GPU streams (e.g.,
CUDA Streams), which could hide memory access latency from
GPUs to main memory and so utilize GPU’s computing power
more. For efficient streaming,GTS adopted and generalized the
slotted page format that divides a graph into fixed-size units. In
terms of exploiting multiple GPUs and SSDs, we also proposedtwo
strategies, the strategy for performance and the strategy for scala-
bility. GTS is fairly scalable in terms of the number of GPUs and
SSDs, and so, shows a stable speedup when adding a GPU or an
SSD to the machine. Through extensive experiments, we demon-
strated thatGTS consistently and significantly outperforms the ma-
jor distributed graph processing methods, GraphX, Giraph,and
PowerGraph, and the state-of-the-art GPU-based method TOTEM,
across wide range of benchmarks. Especially, we demonstrated that
GTS can process an RMAT32 graph within a reasonable time in a
single machine that the existing distributed methods fail to process
by using 30 machines of a total of about 2 TB memory.
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APPENDIX
In this appendix, we present the details on GPU kernel functions of
GTS for two typical graph algorithms, BFS and PageRank, used in
the experiments.GTS requires two different kinds of GPU kernels
for processing SPs and LPs, as explained in Section 3.4, since SPs
and LPs have a little different structure. Thus, we present atotal
of four kernels: two kernels KBFS_SPand KBFS_LP for BFS and two
kernels KPR_SPand KPR_LP for PageRank. Appendix A presents the
mapping table of the slotted page format required for understanding
the four GPU kernels.

A. MAPPING TABLE FROM RID TO VID
Each record ID (i.e. physical ID) in ADJLIST consists of a pair

of the page ID (ADJ_PID) and the slot number (ADJ_OFF) where
the corresponding vertex is located. For example, in Fig. 1,AD-
JLIST of v3 in LP1 containsr2, which points tov2 in SP0, and
thus consists of a pair of 0 (ADJ_PID) and 2 (ADJ_OFF). Since the
graph algorithms usually require vertex IDs for traversal instead
of record ID, they need a method to translate a record ID to the
corresponding vertex ID. For that purpose, The slotted pagefor-
mat maintains a kind of mapping table from RID to VID, called
RVT in main memory. Fig. 12 shows RVT forG in Fig. 1. In
RVT, there exists a tuple for each slotted page, and a tuple consists
of a pair of START_VID and LP_RANGE, where START_VID
means the first VID in the corresponding page, and LP_RANGE
means the range of large page IDs. We can easily and quickly
translate RID to VID by calculating RVT[ADJ_PID].START_VID
+ ADJ_OFF for a given RID, i.e. (ADJ_PID, ADJ_OFF). For ex-
ample,r2 is (0, 2) as explained above, and so its VID is calcu-
lated by RVT[0].START_VID + 2 = 2. That is,r2’s VID is 2.
In Appendix B, we denote the VID calculated using (ADJ_PID,
ADJ_OFF) as ADJ_VID.
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Figure 12: The RVT table for mapping RID to VID.

B. GPU KERNELS IN GTS

B.1 Kernel for BFS
We exploit the virtual warp-centric (VWC) technique [15] asa

default technique for the BFS graph algorithm, where the threads in
a warp process the outgoing edges of a vertex simultaneously. Al-
gorithm 2 shows the GPU kernel KBFS_SPfor processing SPs. Since
it is a kind ofθ-join operator between topology data and attribute
vector, it takes SP and LV as inputs, where LV is WA for traversal
levels of vertices. It also takes a flag finished and a current traver-
sal level curLevel, as in [15]. As the last input, it takes thelocal
nextPIDSet maintained in each GPU, denoted as nextPIDSetGPU.
It is a bit vector where the number of bits is equal to the number
of pages, and a bit1 means that the corresponding page should
be visited next. The overall structure of the kernel is similar with
that of the kernel in [15], since both follow the same VWC tech-
nique. It first calculates the warp ID (W_ID) and the offset inthe

Algorithm 2 BFS Kernel for SP
Input: SP; /* a small page */

LV; /* WA for level */
finished; /* flag for finishing traversal */
curLevel; /* current traversal level */
nextPIDSetGPU; /* local nextPIDSet in GPU */

1: __kernel__ KBFS_SP(SP, LV, finished, curLevel, nextPIDSetGPU) {
2: ID← THREAD_ID;
3: W_ID← ID / W_SZ;
4: W_OFF← ID % W_SZ;
5: while W_ID < SP.NUM_NODESdo
6: VID ← SP[W_ID].VID;
7: ADJLIST_SZ← SP[W_ID].ADJLIST_SZ;
8: ADJLIST← SP[W_ID].ADJLIST;
9: if LV[VID] = curLevel then

10: expand_warp(W_OFF, ADJLIST_SZ, ADJLIST, LV, finished,
curLevel, nextPIDSetGPU);

11: }

12: __device__ expand_warp(W_OFF, ADJLIST_SZ, ADJLIST, LV, fin-
ished, curLevel, nextPIDSetGPU) {

13: for i←W_OFF;i < ADJLIST_SZ;i←W_SZ+i do
14: ADJ_PID← ADJLIST[i].PID;
15: ADJ_OFF← ADJLIST[i].OFF;
16: ADJ_VID← RVT[ADJ_PID].START_VID+ADJ_OFF;
17: if LV[ADJ_VID] = NULL then
18: LV[ADJ_VID] ← curLevel + 1;
19: nextPIDSetGPU[ADJ_PID]← true;
20: finished← false;
21: __threadfence_block();
22: }

Algorithm 3 BFS Kernel for LP
Input: LP; /* a large page */

LV; /* WA for level */
finished; /* flag for finishing traversal */
curLevel; /* current traversal level */
nextPIDSetGPU; /* local nextPIDSet in GPU */

1: __kernel__ KBFS_LP(LP, LV, finished, curLevel, nextPIDSetGPU) {
2: ID← THREAD_ID;
3: VID ← LP.VID;
4: while ID < LP.ADJLIST_SZdo
5: if LV[VID] = curLevel then
6: ADJ_PID← LP.ADJLIST[ID].PID;
7: ADJ_OFF← LP.ADJLIST[ID].OFF;
8: ADJ_VID← RVT[ADJ_PID].START_VID+ADJ_OFF;
9: if LV[ADJ_VID] = NULL then

10: LV[ADJ_VID] ← curLevel + 1;
11: nextPIDSetGPU[ADJ_PID]← true;
12: finished← false;
13: }



warp (W_OFF) for each thread (Lines 2-4). Then, each warp pro-
cesses a single vertex in SP (Lines 5-12). A warp checks the corre-
sponding VID, ADJLIST_SZ, and ADJLIST (Lines 6-8) and then
calls the expand_warp routine if the corresponding vertex should
be traversed, i.e. LV[VID] is equal to curLevel (Lines 9-11).

The expand_warp routine processes all neighbor vertices inAD-
JLIST in a warp centric manner. That is, it processes the firstW_SZ
neighbor vertices, and then processes the next W_SZ neighbor ver-
tices, and so on (Line 15). Each thread in a warp checks ADJ_PID
and ADJ_OFF of the corresponding neighbor vertex (Lines 16-17)
and calculates ADJ_VID (Line 18). If the corresponding neigh-
bor vertex ADJ_VID is not visited yet (Line 19), the thread sets
LV[ADJ_VID] to curLevel + 1 (Line 20) and sets the flag finished
to false (Line 22). The thread also sets the bit nextPIDSetGPU[ADJ_
PID] to true (Line 21) such that theGTS framework could asyn-
chronously copy the page ADJ_PID from main memory to GPU at
the next level traversal. Finally, the routine calls CUDA’s__thread-
fence_block() function to synchronize all of the threads within the
warp (Line 29).

Algorithm 3 shows the GPU kernel KBFS_LP for processing LPs.
It is basically similar to KBFS_SP, except that multiple warps for a
large page processes ADJLIST of the page together. Since a sin-
gle warp does not need to process an entire ADJLIST of a vertex,
there is no loop like Line 15 in the KBFS_SPkernel. Instead, each
thread performs the body of the expand_warp routine of KBFS_SP

directly (Lines 6-13) if the current vertex should be traversed, i.e.
LV[VID] is equal to curLevel (Line 5). In KBFS_LP, since there is
no calling of the warp-level routine like expand_warp in thekernel,
there is no warp-level synchronization like __threadfence_block().

B.2 Kernel for PageRank
We exploit the edge-based method proposed in [17] in addition

to the VWC technique for the PageRank graph algorithm. In the
edge-based method, a GPU thread takes responsibility for partial
updating the PageRank value of the source (or destination) node of
an edge. Algorithm 4 shows the GPU kernel KPR_SPfor processing
SPs. Since it is also a kind ofθ-join operator between topology data
and attribute vector, it takes SP and two required attributevectors
nextPR and prevPR as inputs. Since nextPR is WA, the kernel re-
quires the entire nextPR. In contrast, prevPR is RA, and so the ker-
nel only requires the partial prevPR corresponding to the given SP
as explained in Section 3.1. We denote such a subvector of prevPR
as prevPR[v:w]. Before calling the kernel KPR_SP, each element of
nextPR is initialized to1−df

|V |
in main memory, where df means the

damping factor. Thus, the kernel only needs to add the value of the
remaining part of the PageRank equation to nextPR. The outline of
KPR_SP is similar to that of KBFS_SP(Lines 2-8). A warp calls the
expand_warp routine in order to update the PageRank values for
the outgoing edges from VID (Line 9). The expand_warp routine
processes all neighbor vertices in ADJLIST in a warp centricman-
ner, as in KBFS_SP. Each thread in a warp calculates ADJ_VID of
the corresponding neighbor vertex as in A.2 (Line 16) and calcu-
lates the partial PageRank value for ADJ_VID with considering the
edge between VID and ADJ_VID (Line 17). The calculated value
is added to nextPR[ADJ_VID]. Here, since multiple GPU threads
could update nextPR[ADJ_VID] simultaneously, we should use the
atomicAdd operator to avoid a race condition. CUDA supportssev-
eral atomic operators including atomicAdd. At the end of therou-
tine, the synchronization function is called as in KBFS_SP(Line 19).

Algorithm 5 shows the GPU kernel KPR_LP for processing LPs. It
is basically similar to KPR_SP, except that multiple warps for a large
page processes ADJLIST of the page together. As in KBFS_LP, each

thread performs the body of the expand_warp routine of KPR_SP

directly (Lines 4-7).

Algorithm 4 PageRank Kernel for SP
Input: SP; /* a small page (for vertices [v:w]) */

nextPR; /* WA */
prevPR[v:w]; /* subvector of RA */

1: __kernel__ KPR_SP(SP, nexPR, prevPR[v:w]) {
2: ID← THREAD_ID;
3: W_ID← ID / W_SZ;
4: W_OFF← ID % W_SZ;
5: while W_ID < SP.NUM_NODESdo
6: VID ← SP[W_ID].VID;
7: ADJLIST_SZ← SP[W_ID].ADJLIST_SZ;
8: ADJLIST← SP[W_ID].ADJLIST;
9: expand_warp(W_OFF, ADJLIST_SZ, ADJLIST, VID, nextPR, pre-

vPR[v:w]);
10: }

11: __device__ expand_warp(W_OFF, ADJLIST_SZ, ADJLIST, VID,
nextPR, prevPR[v:w]) {

12: for i←W_OFF;i < ADJLIST_SZ;i←W_SZ+i do
13: ADJ_PID← ADJLIST[i].PID;
14: ADJ_OFF← ADJLIST[i].OFF;
15: ADJ_VID← RVT[ADJ_PID].START_VID+ADJ_OFF;
16: atomicAdd(nextPR[ADJ_VID], df * prevPR[VID] / AD-

JLIST_SZ);
17: __threadfence_block();
18: }

Algorithm 5 PageRank Kernel for LP
Input: LP; /* a large page (for vertexv) */

nextPR; /* WA */
prevPR[v]; /* subvector ofv */

1: __kernel__ KPR_LP(LP, nexPR, prevPR[v]) {
2: ID← THREAD_ID;
3: while ID < LP.ADJLIST_SZdo
4: ADJ_PID← LP.ADJLIST[ID].PID;
5: ADJ_OFF← LP.ADJLIST[ID].OFF;
6: ADJ_VID← RVT[ADJ_PID].START_VID+ADJ_OFF;
7: atomicAdd(nextPR[ADJ_VID], df * prevPR[v] / v.ADJLIST_S);
8: }

C. OPTIONS OF TOTEM
Table 5 shows the ratios of graph data processed by GPUs to that

by CPUs in TOTEM (GPU%:CPU%) when following the options
recommended by the authors. In general, as the size of a graph
increases, the size of the GPU partition decreases. However, it is
not for RMAT29 since the mapped memory options of TOTEM
allocates a part of the GPU partition as mapped memory [8].

D. ADDITIONAL GRAPH ALGORITHMS
In addition to BFS and PageRank, for a wider range of bench-

marks, we implement the following three additional graph algo-
rithms usingGTS: Single-Source Shortest Path (SSSP), Connected
Components (CC), and Betweenness Centrality (BC). It demonstrates
the adaptability ofGTS. We select those three graph algorithms
since Giraph, GraphX, PowerGraph, and TOTEM commonly sup-
port them. Figure 13 shows the comparison results among five
methods (BC between two methods).GTS significantly outper-
forms other four methods for SSSP and CC, and also largely out-
performs TOTEM for CC. Here, we perform the experiments of BC
using the default mode, i.e., the single node mode for both methods.



Table 5: Ratios of partition sizes in TOTEM (GPU%:CPU%).
data one GPU two GPUs

BFS PageRank BFS PageRank

RMAT27 65:35 60:40 80:20 80:20
RMAT28 15:85 60:40 40:60 80:20
RMAT29 50:50 15:85 75:25 30:70

Twitter 50:50 80:20 75:25 85:15
UK2007 35:65 30:70 70:30 60:40

YahooWeb 10:90 15:85 N/A N/A

E. MICRO-LEVEL PARALLEL PROCESS-
ING

Figure 14 shows the performance ofGTS for BFS and PageRank
while changing the density (i.e., #vertices : #edges) of RMAT28
from 1:4 to 1:32 and changing a micro-level parallel processing
technique for each slotted page. The three techniques discussed in
Section 6.2 show similar performance for very sparse graph of 1:4.
However, for denser graphs, the edge-centric strategy outperforms
the vertex-centric strategy largely. The hybrid strategy improves
the performance slightly (up to 6% for BFS and up to 24% for
PageRank) compared with the edge-centric one.

64

245

65

93

17.9
34.6

8.9

130.3

2.8 10.9

0

50

100

150

200

250

300

Twitter RMAT28

A
v
g
. 
e
la
p
s
e
d
 T
im
e
 (
s
e
c
.)

Datasets

GraphX

Giraph

PowerGraph

TOTEM

GTS

106

227

50

28

59.5

107.8

7.6
23.8

3
18.9

0

50

100

150

200

250

Twitter RMAT28

A
v
g
. 
e
la
p
s
e
d
 T
im
e
 (
s
e
c
.)

Datasets

GraphX

Giraph
PowerGraph

TOTEM

GTS

(a) Comparison for Single-Source Shortest Path (SSSP)

(b) Comparison for Connected Components (CC)

11.76
22.68

97.67

7.82

13.05
26.23

0

20

40

60

80

100

120

Twitter RMAT27 RMAT28

A
v
g
. 
e
la
p
s
e
d
 t
im
e
 (
s
e
c
.)

Datasets

TOTEM

GTS

(c) Comparison for Betweenness Centrality (BC)

Figure 13: Comparison for additional graph algorithms: SSSP,
CC, and BC.
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Figure 14: Performance when changing micro-level parallel
processing techniques and graph density.


